ﻻ يوجد ملخص باللغة العربية
Two-dimensional Talbot array illuminators (TAIs) were designed, fabricated, and evaluated for high-resolution high-contrast x-ray phase imaging of soft tissue at 10-20keV. The TAIs create intensity modulations with a high compression ratio on the micrometer scale at short propagation distances. Their performance was compared with various other wavefront markers in terms of period, visibility, flux efficiency and flexibility to be adapted for limited beam coherence and detector resolution. Differential x-ray phase contrast and dark-field imaging were demonstrated with a one-dimensional, linear phase stepping approach yielding two-dimensional phase sensitivity using Unified Modulated Pattern Analysis (UMPA) for phase retrieval. The method was employed for x-ray phase computed tomography reaching a resolution of 3$mu$m on an unstained murine artery. It opens new possibilities for three-dimensional, non-destructive, and quantitative imaging of soft matter such as virtual histology. The phase modulators can also be used for various other x-ray applications such as dynamic phase imaging, super-resolution structured illumination microscopy, or wavefront sensing.
Currently, dual-energy X-ray phase contrast imaging is usually conducted with an X-ray Talbot-Lau interferometer. However, in this system, the two adopted energy spectra have to be chosen carefully in order to match well with the phase grating. For e
Phase-contrast X-ray imaging can improve the visibility of weakly absorbing objects (e.g. soft tissues) by an order of magnitude or more compared to conventional radiographs. Previously, it has been shown that combining phase retrieval with computed
X-ray phase-contrast imaging has experienced rapid development over the last few decades, and in this technology, the phase modulation strategy of phase-stepping is used most widely to measure the samples phase signal. However, because of its discont
Dual-energy subtraction imaging (DES) is a method to improve the detectability of contrast agents over a lumpy background. Two images, acquired at x-ray energies above and below an absorption edge of the agent material, are logarithmically subtracted
X-ray Talbot-Lau interferometer has been used widely to conduct phase contrast imaging with a conventional low-brilliance x-ray source. Typically, in this technique, background correction has to be performed in order to obtain the pure signal of the