ﻻ يوجد ملخص باللغة العربية
Multiorbital models are important to both the correlation physics and topological behavior of quantum materials. LiFeAs is a prototype iron pnictide suitable for indepth investigation of this issue. Its electronic structure is strikingly different from the prediction of the noninteracting description. Here, a multiorbital Hubbard model for this compound is studied using a $U(1)$ slave spin theory. We demonstrate a new mechanism for a large change in the size of the Fermi surface, namely, orbital selectivity of the energy-level renormalization cooperating with its counterpart in the quasiparticle spectral weight. Using this effect, we show how the dominating features of the electronic structure in LiFeAs are understood in terms of the local correlations alone. Our results reveal a remarkable degree of universality out of the seemingly complex multiorbital building blocks across a broad range of strongly correlated superconductors.
Laser angle-resolved photoemission spectroscopy (ARPES) is employed to investigate the temperature (T) dependence of the electronic structure in BaFe2As2 across the magneto-structural transition at TN ~ 140 K. A drastic transformation in Fermi surfac
The superconductivity discovered in iron-pnictides is intimately related to a nematic ground state, where the C4 rotational symmetry is broken via the structural and magnetic transitions. We here study the nematicity in NaFeAs with the polarization d
We propose that unconventional superconductivity in hydrated sodium cobaltate $Na_xCoO_2$ results from an interplay of electronic correlations and electron-phonon interactions. On the basis of the $t-V$ model plus phonons we found evidences for a) un
We report density functional calculations of the electronic structure and Fermi surface of the BaFe$_2$As$_2$ and LiFeAs phases including doping via the virtual crystal approximation. The results show that contrary to a rigid band picture, the densit
Here we present bulk property measurements and electronic structure calculations for PuFeAsO, an actinide analogue of the iron-based rare-earth superconductors RFeAsO. Magnetic susceptibility and heat capacity data suggest the occurrence of an antife