ﻻ يوجد ملخص باللغة العربية
Here we present bulk property measurements and electronic structure calculations for PuFeAsO, an actinide analogue of the iron-based rare-earth superconductors RFeAsO. Magnetic susceptibility and heat capacity data suggest the occurrence of an antiferromagnetic transition at TN=50 K. No further anomalies have been observed down to 2 K, the minimum temperature that we have been able to achieve. Structural measurements indicate that PuFeAsO, with its more localized 5f electrons, bears a stronger resemblance to the RFeAsO compounds with larger R ions, than NpFeAsO does.
We performed a comprehensive angle-resolved photoemission spectroscopy study of the electronic band structure of LaOFeAs single crystals. We found that samples cleaved at low temperature show an unstable and highly complicated band structure, whereas
We present a soft X-ray angle-resolved photoemission spectroscopy (SX-ARPES) study of the stoichiometric pnictide superconductor LaRu2P2. The observed electronic structure is in good agreement with density functional theory (DFT) calculations. Howeve
The electronic structure of LaOFeAs, a parent compound of iron-arsenic superconductors, is studied by angleresolved photoemission spectroscopy. By examining its dependence on photon energy, polarization, sodium dosing and the counting of Fermi surfac
Motivated by recent experiments on Al nanoparticles, we have studied the effects of fixed electron number and small size in nanoscale superconductors, by applying the canonical BCS theory for the attractive Hubbard model in two and three dimensions.
We report comprehensive study of physical properties of the binary superconductor compound SnAs. The electronic band structure of SnAs was investigated using both angle-resolved photoemission spectroscopy (ARPES) in a wide binding energy range and de