ترغب بنشر مسار تعليمي؟ اضغط هنا

New flavor physics in di- and tri-lepton events from single-top at the LHC and beyond

114   0   0.0 ( 0 )
 نشر من قبل Shaouly Bar-Shalom
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The associated production of a single-top with opposite-sign same-flavor (OSSF) di-leptons, $pp to t ell^+ ell^-$ and $ pp to t ell^+ ell^- + j$ ($j=$light jet), can lead to striking tri-lepton $pp to ell^prime ell^+ ell^- + X$ and di-lepton $pp to ell^+ ell^- + j_b + X$ ($j_b=b$-jet) events at the LHC, after the top decays. Although these rather generic multi-lepton signals are flavor-blind, they can be generated by new 4-Fermi flavor changing (FC) $u_i t ell ell$ scalar, vector and tensor interactions ($u_i in u,c$), which we study in this paper; we match the FC $u_i t ell ell$ 4-Fermi terms to the SMEFT operators and also to different types of FC underlying heavy physics. The main backgrounds to these di- and tri-lepton signals arise from $t bar t$, $Z$+jets and $VV$ ($V=W,Z$) production, but they can be essentially eliminated with a sufficiently high invariant mass selection on the OSSF di-leptons, $m_{ell^+ ell^-}^{tt min}(OSSF) > 1$ TeV; the use of $b$-tagging as an additional selection in the di-lepton final state case also proves very useful. We find, for example, that the expected 95% CL bounds on the scale of a tensor(vector) $u t mu mu$ interaction, with the current $sim 140$ fb$^{-1}$ of LHC data, are $Lambda < 5(3.2) $ TeV or $Lambda < 4.1(2.7)$ TeV, if analyzed via the di-muon $mu^+ mu^- + j_b$ signal or the $e mu^+ mu^-$ tri-lepton one, respectively. The expected reach at the HL-LHC with 3000 fb$^{-1}$ of data is $Lambda < 7.1(4.7)$ TeV and $Lambda < 2.4(1.5)$ TeV for the corresponding $u t mu mu$ and $c t mu mu$ operators. We also study the potential sensitivity at future 27 TeV and 100 TeV high-energy LHC successors and also discuss the possible implications of this class of FC 4-Fermi effective interactions on lepton non-universality tests at the LHC.



قيم البحث

اقرأ أيضاً

We address the potential of measurements with boosted single-top final states at the high-luminosity LHC (HL-LHC) and possible future hadron colliders: the high-energy LHC (HE-LHC), and the future circular collider (FCC). As new physics examples to a ssess the potential, we consider the search for $tbW$ anomalous couplings and for a weakly-coupled $W$ boson. The FCC would improve by a factor of two the sensitivity to anomalous couplings of the HL-LHC. For $W$ bosons, the FCC is sensitive to $W$ couplings $2-5$ times smaller than the HL-LHC in the mass range 2-4 TeV, and to masses up to 30 TeV in the case of Standard Model-like couplings.
We consider the possibility of studying new physics that singles out the tau-lepton at the LHC. We concentrate on the tau-lepton charge asymmetry in tau+tau- pair production as a tool to probe this physics beyond the Standard Model. We consider two g eneric scenarios for the new physics. We first study a non-universal Z boson as an example of a new resonance that can single out tau-leptons. We then consider vector lepto-quarks coupling of the first generation quarks with the third generation leptons as an example of non-resonant new physics. We find that in both cases the charge asymmetry can be sufficiently sensitive to the new physics to provide useful constraints at the LHC.
This is the third out of five chapters of the final report [1] of the Workshop on Physics at HL-LHC, and perspectives on HE-LHC [2]. It is devoted to the study of the potential, in the search for Beyond the Standard Model (BSM) physics, of the High L uminosity (HL) phase of the LHC, defined as $3~mathrm{ab}^{-1}$ of data taken at a centre-of-mass energy of $14~mathrm{TeV}$, and of a possible future upgrade, the High Energy (HE) LHC, defined as $15~mathrm{ab}^{-1}$ of data at a centre-of-mass energy of $27~mathrm{TeV}$. We consider a large variety of new physics models, both in a simplified model fashion and in a more model-dependent one. A long list of contributions from the theory and experimental (ATLAS, CMS, LHCb) communities have been collected and merged together to give a complete, wide, and consistent view of future prospects for BSM physics at the considered colliders. On top of the usual standard candles, such as supersymmetric simplified models and resonances, considered for the evaluation of future collider potentials, this report contains results on dark matter and dark sectors, long lived particles, leptoquarks, sterile neutrinos, axion-like particles, heavy scalars, vector-like quarks, and more. Particular attention is placed, especially in the study of the HL-LHC prospects, to the detector upgrades, the assessment of the future systematic uncertainties, and new experimental techniques. The general conclusion is that the HL-LHC, on top of allowing to extend the present LHC mass and coupling reach by $20-50%$ on most new physics scenarios, will also be able to constrain, and potentially discover, new physics that is presently unconstrained. Moreover, compared to the HL-LHC, the reach in most observables will generally more than double at the HE-LHC, which may represent a good candidate future facility for a final test of TeV-scale new physics.
80 - F. Hubaut 2006
The new CERN proton-proton collider, the LHC, is about to start in 2007 its data taking. Millions of top quarks will be available out of these data, allowing to perform a wide range of precision measurements and searches for new physics. An overview of the planned top physics program accessible with ttbar events is given for the ATLAS and CMS experiments. A particular emphasis is put on the precision measurements of the top mass, top polarization and searches for new physics in top production and decay.
The physics responsible for neutrino masses and lepton mixing remains unknown. More experimental data are needed to constrain and guide possible generalizations of the standard model of particle physics, and reveal the mechanism behind nonzero neutri no masses. Here, the physics associated with searches for the violation of lepton-flavor conservation in charged-lepton processes and the violation of lepton-number conservation in nuclear physics processes is summarized. In the first part, several aspects of charged-lepton flavor violation are discussed, especially its sensitivity to new particles and interactions beyond the standard model of particle physics. The discussion concentrates mostly on rare processes involving muons and electrons. In the second part, the status of the conservation of total lepton number is discussed. The discussion here concentrates on current and future probes of this apparent law of Nature via searches for neutrinoless double beta decay, which is also the most sensitive probe of the potential Majorana nature of neutrinos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا