ﻻ يوجد ملخص باللغة العربية
The new CERN proton-proton collider, the LHC, is about to start in 2007 its data taking. Millions of top quarks will be available out of these data, allowing to perform a wide range of precision measurements and searches for new physics. An overview of the planned top physics program accessible with ttbar events is given for the ATLAS and CMS experiments. A particular emphasis is put on the precision measurements of the top mass, top polarization and searches for new physics in top production and decay.
The top quark will be produced copiously at the LHC. This will make both detailed physics studies and the use of top quark decays for detector calibration possible. This talk reviews plans and prospects for top physics activities in the ATLAS and CMS experiments.
The Large Hadron Collider (LHC) is expected to provide proton-proton collisions at a centre-of-mass energy of 14 TeV, yielding millions of of top quark events. The top-physics potential of the two general purpose experiments, ATLAS and CMS, is discus
We report on a measurement of the top-quark electric charge in ttbar events in which one W boson originating from the top-quark pair decays into leptons and the other into hadrons. The event sample was collected by the CDF II detector in sqrt(s)=1.96
We consider the possibility of studying novel particles at the TeV scale with enhanced couplings to the top quark via top quark pair production at the LHC and VLHC. In particular we discuss the case of neutral scalar and vector resonances associated
The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2x10^10 - 2x10^12 eV. ACORDE, ALICE Cosm