ﻻ يوجد ملخص باللغة العربية
We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems, two from the theory of matroids and the third from graph theory. The input to the Weighted Diverse Bases problem consists of a matroid $M$, a weight function $omega:E(M)tomathbb{N}$, and integers $kgeq 1, dgeq 0$. The task is to decide if there is a collection of $k$ bases $B_{1}, dotsc, B_{k}$ of $M$ such that the weight of the symmetric difference of any pair of these bases is at least $d$. This is a diverse variant of the classical matroid base packing problem. The input to the Weighted Diverse Common Independent Sets problem consists of two matroids $M_{1},M_{2}$ defined on the same ground set $E$, a weight function $omega:Etomathbb{N}$, and integers $kgeq 1, dgeq 0$. The task is to decide if there is a collection of $k$ common independent sets $I_{1}, dotsc, I_{k}$ of $M_{1}$ and $M_{2}$ such that the weight of the symmetric difference of any pair of these sets is at least $d$. This is motivated by the classical weighted matroid intersection problem. The input to the Diverse Perfect Matchings problem consists of a graph $G$ and integers $kgeq 1, dgeq 0$. The task is to decide if $G$ contains $k$ perfect matchings $M_{1},dotsc,M_{k}$ such that the symmetric difference of any two of these matchings is at least $d$. We show that Weighted Diverse Bases and Weighted Diverse Common Independent Sets are both NP-hard, and derive fixed-parameter tractable (FPT) algorithms for all three problems with $(k,d)$ as the parameter.
Sparse graphs and their associated matroids play an important role in rigidity theory, where they capture the combinatorics of generically rigid structures. We define a new family called {bf graded sparse graphs}, arising from generically pinned (com
Let $G$ be a simple $n$-vertex graph and $c$ be a colouring of $E(G)$ with $n$ colours, where each colour class has size at least $2$. We prove that $(G,c)$ contains a rainbow cycle of length at most $lceil frac{n}{2} rceil$, which is best possible.
In the matroid secretary problem we are given a stream of elements and asked to choose a set of elements that maximizes the total value of the set, subject to being an independent set of a matroid given in advance. The difficulty comes from the assum
This paper is motivated by the fact that many systems need to be maintained continually while the underlying costs change over time. The challenge is to continually maintain near-optimal solutions to the underlying optimization problems, without crea
A well-known problem in scheduling and approximation algorithms is the Santa Claus problem. Suppose that Santa Claus has a set of gifts, and he wants to distribute them among a set of children so that the least happy child is made as happy as possibl