ﻻ يوجد ملخص باللغة العربية
This paper is motivated by the fact that many systems need to be maintained continually while the underlying costs change over time. The challenge is to continually maintain near-optimal solutions to the underlying optimization problems, without creating too much churn in the solution itself. We model this as a multistage combinatorial optimization problem where the input is a sequence of cost functions (one for each time step); while we can change the solution from step to step, we incur an additional cost for every such change. We study the multistage matroid maintenance problem, where we need to maintain a base of a matroid in each time step under the changing cost functions and acquisition costs for adding new elements. The online version of this problem generalizes online paging. E.g., given a graph, we need to maintain a spanning tree $T_t$ at each step: we pay $c_t(T_t)$ for the cost of the tree at time $t$, and also $| T_tsetminus T_{t-1} |$ for the number of edges changed at this step. Our main result is an $O(log m log r)$-approximation, where $m$ is the number of elements/edges and $r$ is the rank of the matroid. We also give an $O(log m)$ approximation for the offline version of the problem. These bounds hold when the acquisition costs are non-uniform, in which caseboth these results are the best possible unless P=NP. We also study the perfect matching version of the problem, where we must maintain a perfect matching at each step under changing cost functions and costs for adding new elements. Surprisingly, the hardness drastically increases: for any constant $epsilon>0$, there is no $O(n^{1-epsilon})$-approximation to the multistage matching maintenance problem, even in the offline case.
We introduce delta-graphic matroids, which are matroids whose bases form graphic delta-matroids. The class of delta-graphic matroids contains graphic matroids as well as cographic matroids and is a proper subclass of the class of regular matroids. We
In the matroid secretary problem we are given a stream of elements and asked to choose a set of elements that maximizes the total value of the set, subject to being an independent set of a matroid given in advance. The difficulty comes from the assum
We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems, two from the theory of matroids and the third from graph theory. The input to the Weighted Diverse Bases problem consists of
In this paper, we consider a multistage expected utility maximization problem where the decision makers utility function at each stage depends on historical data and the information on the true utility function is incomplete. To mitigate the risk ari
A well-known problem in scheduling and approximation algorithms is the Santa Claus problem. Suppose that Santa Claus has a set of gifts, and he wants to distribute them among a set of children so that the least happy child is made as happy as possibl