ﻻ يوجد ملخص باللغة العربية
Diffusive dynamics in presence of deep energy minima and weak nongradient forces can be coarse-grained into a mesoscopic jump process over the various basins of attraction. Combining standard weak-noise results with a path integral expansion around equilibrium, we show that the emerging transition rates satisfy local detailed balance (LDB). Namely, the log ratio of the transition rates between nearby basins of attractions equals the free-energy variation appearing at equilibrium, supplemented by the work done by the nonconservative forces along the typical transition path. When the mesoscopic dynamics possesses a large-size deterministic limit, it can be further reduced to a jump process over macroscopic states satisfying LDB. The persistence of LDB under coarse graining of weakly nonequilibrium states is a generic consequence of the fact that only dissipative effects matter close to equilibrium.
An extension of the H-theorem for dissipative particle dynamics (DPD) to the case of a multi-component fluid is made. Detailed balance and an additional H-theorem are proved for an energy-conserving version of the DPD algorithm. The implications of t
We present a comprehensive study about the relationship between the way Detailed Balance is broken in non-equilibrium systems and the resulting violations of the Fluctuation-Dissipation Theorem. Starting from stochastic dynamics with both odd and eve
As the core ingredient for spin polarization, the local equilibrium spin distribution function is derived from the detailed balance principle. The kinetic theory for interacting fermionic systems is applied to the Nambu--Jona-Lasinio model at quark l
The effect of a change of noise amplitudes in overdamped diffusive systems is linked to their unperturbed behavior by means of a nonequilibrium fluctuation-response relation. This formula holds also for systems with state-independent nontrivial diffu
We propose an atomistic model for correlated particle dynamics in liquids and glasses predicting both slow stretched-exponential relaxation (SER) and fast compressed-exponential relaxation (CER). The model is based on the key concept of elastically i