ﻻ يوجد ملخص باللغة العربية
We present a comprehensive study about the relationship between the way Detailed Balance is broken in non-equilibrium systems and the resulting violations of the Fluctuation-Dissipation Theorem. Starting from stochastic dynamics with both odd and even variables under Time-Reversal, we exploit the relation between entropy production and the breakdown of Detailed Balance to establish general constraints on the non-equilibrium steady-states (NESS), which relate the non-equilibrium character of the dynamics with symmetry properties of the NESS distribution. This provides a direct route to derive extended Fluctuation-Dissipation Relations, expressing the linear response function in terms of NESS correlations. Such framework provides a unified way to understand the departure from equilibrium of active systems and its linear response. We then consider two paradigmatic models of interacting self-propelled particles, namely Active Brownian Particles (ABP) and Active Ornstein-Uhlenbeck Particles (AOUP). We analyze the non-equilibrium character of these systems (also within a Markov and a Chapman-Enskog approximation) and derive extended Fluctuation-Dissipation Relations for them, clarifying which features of these active model systems are genuinely non-equilibrium.
Fluctuation-dissipation relations or theorems (FDTs) are fundamental for statistical physics and can be rigorously derived for equilibrium systems. Their applicability to non-equilibrium systems is, however, debated. Here, we simulate an active micro
Identifying dissipation is essential for understanding the physical mechanisms underlying nonequilibrium processes. {In living systems, for example, the dissipation is directly related to the hydrolysis of fuel molecules such as adenosine triphosphat
By analogy with linear-response we formulate the duality and reciprocity properties of current and voltage fluctuations expressed by Nyquist relations including the intrinsic bandwidths of the respective fluctuations. For this purpose we individuate
We re-derive the Nyquist theorem and Callen-Welton fluctuation-dissipation theorem (FDT) as a consequence of detailed balance principle applied to a harmonic oscillator. The usage of electrical notions in the beginning makes the consideration underst
A stochastic dynamics has a natural decomposition into a drift capturing mean rate of change and a martingale increment capturing randomness. They are two statistically uncorrelated, but not necessarily independent mechanisms contributing to the over