ﻻ يوجد ملخص باللغة العربية
The cosmic-ray ionization rate ($zeta$, s$^{-1}$) plays an important role in the interstellar medium. It controls ion-molecular chemistry and provides a source of heating. Here we perform a grid of calculations using the spectral synthesis code CLOUDY along nine sightlines towards, HD 169454, HD 110432, HD 204827, $lambda$ Cep, X Per, HD 73882, HD 154368, Cyg OB2 5, Cyg OB2 12. The value of $zeta$ is determined by matching the observed column densities of H$_3^+$ and H$_2$. The presence of polycyclic aromatic hydrocarbons (PAHs) affects the free electron density, which changes the H$_3^+$ density and the derived ionization rate. PAHs are ubiquitous in the Galaxy, but there are also regions where PAHs do not exist. Hence, we consider clouds with a range of PAH abundances and show their effects on the H$_3^+$ abundance. We predict an average cosmic-ray ionization rate for H$_2$ ($zeta$(H$_2$))= (7.88 $pm$ 2.89) $times$ 10$^{-16}$ s$^{-1}$ for models with average Galactic PAHs abundances, (PAH/H =10$^{-6.52}$), except Cyg OB2 5 and Cyg OB2 12. The value of $zeta$ is nearly 1 dex smaller for sightlines toward Cyg OB2 12. We estimate the average value of $zeta$(H$_2$)= (95.69 $pm$ 46.56) $times$ 10$^{-16}$ s$^{-1}$ for models without PAHs.
The amount of deuterium locked up in polycyclic aromatic hydrocarbons (PAHs) has to date been an uncertain value. We present a near-infrared (NIR) spectroscopic survey of HII regions in the Milky Way, Large Magellanic Cloud (LMC), and Small Magellani
We observationally investigate the relation between the photoelectric heating efficiency in PDRs and the charge of PAHs, which are considered to play a key role in photoelectric heating. Using PACS onboard Herschel, we observed six PDRs spanning a wi
As images and spectra from ISO and Spitzer have provided increasingly higher-fidelity representations of the mid-infrared (MIR) and Polycyclic Aromatic Hydrocarbon (PAH) emission from galaxies and galactic and extra-galactic regions, more systematic
We present a new method to accurately describe the ionization fraction and the size distribution of polycyclic aromatic hydrocarbons (PAHs) within astrophysical sources. To this purpose, we have computed the mid-infrared emission spectra of 308 PAH m
We report new correlations between ratios of band intensities of the 15-20 {mu}m emission bands of polycyclic aromatic hydrocarbons (PAHs) in a sample of fifty-seven sources observed with Spitzer/IRS. This sample includes Large Magellanic Cloud point