ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Temperature Superconductivity in Cerium Superhydrides

99   0   0.0 ( 0 )
 نشر من قبل Xiaoli Huang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discoveries of high-temperature superconductivity in H3S and LaH10 have excited the search for superconductivity in compressed hydrides. In contrast to rapidly expanding theoretical studies, high-pressure experiments on hydride superconductors are expensive and technically challenging. Here we experimentally discover superconductivity in two new phases,Fm-3m-CeH10 (SC-I phase) and P63/mmc-CeH9 (SC-II phase) at pressures that are much lower (<100 GPa) than those needed to stabilize other polyhydride superconductors. Superconductivity was evidenced by a sharp drop of the electrical resistance to zero, and by the decrease of the critical temperature in deuterated samples and in an external magnetic field. SC-I has Tc=115 K at 95 GPa, showing expected decrease on further compression due to decrease of the electron-phonon coupling (EPC) coefficient {lambda} (from 2.0 at 100 GPa to 0.8 at 200 GPa). SC-II has Tc = 57 K at 88 GPa, rapidly increasing to a maximum Tc ~100 K at 130 GPa, and then decreasing on further compression. This maximum of Tc is due to a maximum of {lambda} at the phase transition from P63/mmc-CeH9 into a symmetry-broken modification C2/c-CeH9. The pressure-temperature conditions of synthesis affect the actual hydrogen content, and the actual value of Tc. Anomalously low pressures of stability of cerium superhydrides make them appealing for studies of superhydrides and for designing new superhydrides with even lower pressures of stability.



قيم البحث

اقرأ أيضاً

360 - Z.W.Li , X.He , C.L.Zhang 2021
The calcium superhydrides are synthesized at high pressure of 180 GPa and 1000 degree high temperatures. Superconductivity with Tc onset about 210 K is realized in thus obtained hydrogen rich calcium compounds at high pressure. The critical magnetic field Hc2(T) is estimated to around 166 T in the Ginzburg Landau model.
Subsequent to our recent report of SDW type transition at 190 K and antiferromagnetic order below 20 K in EuFe2As2, we have studied the effect of K-doping on the SDW transition at high temperature and AF order at low temperature. 50% K doping suppres ses the SDW transition and in turn gives rise to high-temperature superconductivity below T_c = 32 K, as observed in the electrical resistivity, AC susceptibility as well as magnetization. A well defined anomaly in the specific heat provides additional evidence for bulk superconductivity.
Pressure-stabilized hydrides are a new rapidly growing class of high-temperature superconductors which is believed to be described within the conventional phonon-mediated mechanism of coupling. Here we report the synthesis of yttrium hexahydride Im3m -YH$_6$ that demonstrates the superconducting transition with T$_c$ = 224 K at 166 GPa, much lower than the theoretically predicted (>270 K). The measured upper critical magnetic field B$_c$$_2$(0) of YH$_6$ was found to be 116-158 T, which is 2-2.5 times larger than the calculated value. A pronounced shift of T$_c$ in yttrium deuteride YD$_6$ with the isotope coefficient 0.4 supports the phonon-assisted superconductivity. Current-voltage measurements showed that the critical current I$_c$ and its density J$_c$ may exceed 1.75 A and 3500 A/mm$^2$ at 0 K, respectively, which is comparable with the parameters of commercial superconductors, such as NbTi and YBCO. The superconducting density functional theory (SCDFT) and anharmonic calculations suggest unusually large impact of the Coulomb repulsion in this compound. The results indicate notable departures of the superconducting properties of the discovered YH$_6$ from the conventional Migdal-Eliashberg and Bardeen-Cooper-Schrieffer theories.
Recently a big number of works devoted to search for new hydrides with record high-temperature superconductivity and at the same time the successful synthesis of potential high-TC superconducting FeH5 was reported. We present a systematic search for stable compounds in the Fe-H system using variable-composition version of the evolutionary algorithm USPEX. All known (FeH, FeH3, FeH5) and several new Fe3H5, Fe3H13 and FeH6 iron hydrides were found to be stable, resulting in a very complex phase diagram with rich structural relationships between phases. We calculate electronic properties of two potentially high-TC FeH5 and FeH6 phases in the pressure range from 150 to 300 GPa. Indeed, hydrogen-rich FeH5 and FeH6 phases were found to be superconducting within Bardeen-Cooper-Schrieffer theory, with TC values of up to 46 K.
Following the discovery of high-temperature superconductivity in the La-H system, where for the recently discovered fcc-LaH10 a record critical temperature Tc = 250 K was achieved [Drozdov et al., Nature, 569, 528 (2019) and Somayazulu et al., Phys. Rev. Lett. 122, 027001 (2019)], we studied the formation of new chemical compounds in the barium-hydrogen system at pressures up to 173 GPa. Using in situ generation of hydrogen from NH3BH3, we synthesized previously unknown superhydride BaH12 with a pseudocubic (fcc) Ba sublattice, which was observed in a wide range of pressures from 75 to 173 GPa in four independent experiments. DFT calculations indicate a close agreement between the theoretical and experimental equations of state. In addition to BaH12, we identified previously known P6/mmm BaH2 and possibly BaH10 and BaH6 as impurities in the samples. Ab initio calculations show that newly discovered semimetallic BaH12 contains H2, H3 molecular units and detached H12 chains. Barium dodecahydride is a unique molecular hydride with metallic conductivity which demonstrates a superconducting transition around 20 K at 140 GPa in agreement with calculations (19-32 K). The interpretation of the multiphase XRD data was possible thanks to the development of new Python scripts for postprocessing the results of evolutionary searches. These scripts help quickly identify the theoretical structures that explain the experimental data in the best way, among thousands of candidates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا