ﻻ يوجد ملخص باللغة العربية
Recently a big number of works devoted to search for new hydrides with record high-temperature superconductivity and at the same time the successful synthesis of potential high-TC superconducting FeH5 was reported. We present a systematic search for stable compounds in the Fe-H system using variable-composition version of the evolutionary algorithm USPEX. All known (FeH, FeH3, FeH5) and several new Fe3H5, Fe3H13 and FeH6 iron hydrides were found to be stable, resulting in a very complex phase diagram with rich structural relationships between phases. We calculate electronic properties of two potentially high-TC FeH5 and FeH6 phases in the pressure range from 150 to 300 GPa. Indeed, hydrogen-rich FeH5 and FeH6 phases were found to be superconducting within Bardeen-Cooper-Schrieffer theory, with TC values of up to 46 K.
The discoveries of high-temperature superconductivity in H3S and LaH10 have excited the search for superconductivity in compressed hydrides. In contrast to rapidly expanding theoretical studies, high-pressure experiments on hydride superconductors ar
The calcium superhydrides are synthesized at high pressure of 180 GPa and 1000 degree high temperatures. Superconductivity with Tc onset about 210 K is realized in thus obtained hydrogen rich calcium compounds at high pressure. The critical magnetic
Since the discovery of high-temperature superconductivity in the thin-film FeSe/SrTiO$_3$ system, iron selenide and its derivates have been intensively scrutinized. Using ab initio density functional theory calculations we review the electronic struc
Angle resolved photoemission spectroscopy (ARPES) reveals the features of the electronic structure of quasi-two-dimensional crystals, which are crucial for the formation of spin and charge ordering and determine the mechanisms of electron-electron in
The layered iron superconductors are discussed using electronic structure calculations. The four families of compounds discovered so far, including Fe(Se,Te) have closely related electronic structures. The Fermi surface consists of disconnected hole