ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving BERT with Syntax-aware Local Attention

181   0   0.0 ( 0 )
 نشر من قبل Qingyu Zhou
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Pre-trained Transformer-based neural language models, such as BERT, have achieved remarkable results on varieties of NLP tasks. Recent works have shown that attention-based models can benefit from more focused attention over local regions. Most of them restrict the attention scope within a linear span, or confine to certain tasks such as machine translation and question answering. In this paper, we propose a syntax-aware local attention, where the attention scopes are restrained based on the distances in the syntactic structure. The proposed syntax-aware local attention can be integrated with pretrained language models, such as BERT, to render the model to focus on syntactically relevant words. We conduct experiments on various single-sentence benchmarks, including sentence classification and sequence labeling tasks. Experimental results show consistent gains over BERT on all benchmark datasets. The extensive studies verify that our model achieves better performance owing to more focused attention over syntactically relevant words.



قيم البحث

اقرأ أيضاً

Pre-trained language models like BERT achieve superior performances in various NLP tasks without explicit consideration of syntactic information. Meanwhile, syntactic information has been proved to be crucial for the success of NLP applications. Howe ver, how to incorporate the syntax trees effectively and efficiently into pre-trained Transformers is still unsettled. In this paper, we address this problem by proposing a novel framework named Syntax-BERT. This framework works in a plug-and-play mode and is applicable to an arbitrary pre-trained checkpoint based on Transformer architecture. Experiments on various datasets of natural language understanding verify the effectiveness of syntax trees and achieve consistent improvement over multiple pre-trained models, including BERT, RoBERTa, and T5.
One of the most popular paradigms of applying large, pre-trained NLP models such as BERT is to fine-tune it on a smaller dataset. However, one challenge remains as the fine-tuned model often overfits on smaller datasets. A symptom of this phenomenon is that irrelevant words in the sentences, even when they are obvious to humans, can substantially degrade the performance of these fine-tuned BERT models. In this paper, we propose a novel technique, called Self-Supervised Attention (SSA) to help facilitate this generalization challenge. Specifically, SSA automatically generates weak, token-level attention labels iteratively by probing the fine-tuned model from the previous iteration. We investigate two different ways of integrating SSA into BERT and propose a hybrid approach to combine their benefits. Empirically, on a variety of public datasets, we illustrate significant performance improvement using our SSA-enhanced BERT model.
Syntactic information contains structures and rules about how text sentences are arranged. Incorporating syntax into text modeling methods can potentially benefit both representation learning and generation. Variational autoencoders (VAEs) are deep g enerative models that provide a probabilistic way to describe observations in the latent space. When applied to text data, the latent representations are often unstructured. We propose syntax-aware variational autoencoders (SAVAEs) that dedicate a subspace in the latent dimensions dubbed syntactic latent to represent syntactic structures of sentences. SAVAEs are trained to infer syntactic latent from either text inputs or parsed syntax results as well as reconstruct original text with inferred latent variables. Experiments show that SAVAEs are able to achieve lower reconstruction loss on four different data sets. Furthermore, they are capable of generating examples with modified target syntax.
We introduce a new syntax-aware model for dependency-based semantic role labeling that outperforms syntax-agnostic models for English and Spanish. We use a BiLSTM to tag the text with supertags extracted from dependency parses, and we feed these supe rtags, along with words and parts of speech, into a deep highway BiLSTM for semantic role labeling. Our model combines the strengths of earlier models that performed SRL on the basis of a full dependency parse with more recent models that use no syntactic information at all. Our local and non-ensemble model achieves state-of-the-art performance on the CoNLL 09 English and Spanish datasets. SRL models benefit from syntactic information, and we show that supertagging is a simple, powerful, and robust way to incorporate syntax into a neural SRL system.
In recent years, we have seen a colossal effort in pre-training multilingual text encoders using large-scale corpora in many languages to facilitate cross-lingual transfer learning. However, due to typological differences across languages, the cross- lingual transfer is challenging. Nevertheless, language syntax, e.g., syntactic dependencies, can bridge the typological gap. Previous works have shown that pre-trained multilingual encoders, such as mBERT cite{devlin-etal-2019-bert}, capture language syntax, helping cross-lingual transfer. This work shows that explicitly providing language syntax and training mBERT using an auxiliary objective to encode the universal dependency tree structure helps cross-lingual transfer. We perform rigorous experiments on four NLP tasks, including text classification, question answering, named entity recognition, and task-oriented semantic parsing. The experiment results show that syntax-augmented mBERT improves cross-lingual transfer on popular benchmarks, such as PAWS-X and MLQA, by 1.4 and 1.6 points on average across all languages. In the emph{generalized} transfer setting, the performance boosted significantly, with 3.9 and 3.1 points on average in PAWS-X and MLQA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا