ﻻ يوجد ملخص باللغة العربية
We introduce a new syntax-aware model for dependency-based semantic role labeling that outperforms syntax-agnostic models for English and Spanish. We use a BiLSTM to tag the text with supertags extracted from dependency parses, and we feed these supertags, along with words and parts of speech, into a deep highway BiLSTM for semantic role labeling. Our model combines the strengths of earlier models that performed SRL on the basis of a full dependency parse with more recent models that use no syntactic information at all. Our local and non-ensemble model achieves state-of-the-art performance on the CoNLL 09 English and Spanish datasets. SRL models benefit from syntactic information, and we show that supertagging is a simple, powerful, and robust way to incorporate syntax into a neural SRL system.
Semantic role labeling (SRL), also known as shallow semantic parsing, is an important yet challenging task in NLP. Motivated by the close correlation between syntactic and semantic structures, traditional discrete-feature-based SRL approaches make he
Semantic role labeling (SRL) is dedicated to recognizing the semantic predicate-argument structure of a sentence. Previous studies in terms of traditional models have shown syntactic information can make remarkable contributions to SRL performance; h
We present a model for semantic proto-role labeling (SPRL) using an adapted bidirectional LSTM encoding strategy that we call Neural-Davidsonian: predicate-argument structure is represented as pairs of hidden states corresponding to predicate and arg
The goal of semantic role labelling (SRL) is to recognise the predicate-argument structure of a sentence. Recent models have shown that syntactic information can enhance the SRL performance, but other syntax-agnostic approaches achieved reasonable pe
Semantic role labeling (SRL) aims to extract the arguments for each predicate in an input sentence. Traditional SRL can fail to analyze dialogues because it only works on every single sentence, while ellipsis and anaphora frequently occur in dialogue