ترغب بنشر مسار تعليمي؟ اضغط هنا

Model comparison via simplicial complexes and persistent homology

163   0   0.0 ( 0 )
 نشر من قبل Sean Vittadello
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In many scientific and technological contexts we have only a poor understanding of the structure and details of appropriate mathematical models. We often, therefore, need to compare different models. With available data we can use formal statistical model selection to compare and contrast the ability of different mathematical models to describe such data. There is, however, a lack of rigorous methods to compare different models emph{a priori}. Here we develop and illustrate two such approaches that allow us to compare model structures in a systematic way {by representing models in terms of simplicial complexes}. Using well-developed concepts from simplicial algebraic topology, we define a distance between models based on their simplicial representations. Employing persistent homology with a flat filtration provides for alternative representations of the models as persistence intervals, which represent the structure of the models, from which we can also obtain the distances between models. We then expand on this measure of model distance to study the concept of model equivalence in order to determine the conceptual similarity of models. We apply our methodology for model comparison to demonstrate an equivalence between a positional-information model and a Turing-pattern model from developmental biology, constituting a novel observation for two classes of models that were previously regarded as unrelated.



قيم البحث

اقرأ أيضاً

In many applications concerning the comparison of data expressed by $mathbb{R}^m$-valued functions defined on a topological space $X$, the invariance with respect to a given group $G$ of self-homeomorphisms of $X$ is required. While persistent homolo gy is quite efficient in the topological and qualitative comparison of this kind of data when the invariance group $G$ is the group $mathrm{Homeo}(X)$ of all self-homeomorphisms of $X$, this theory is not tailored to manage the case in which $G$ is a proper subgroup of $mathrm{Homeo}(X)$, and its invariance appears too general for several tasks. This paper proposes a way to adapt persistent homology in order to get invariance just with respect to a given group of self-homeomorphisms of $X$. The main idea consists in a dual approach, based on considering the set of all $G$-invariant non-expanding operators defined on the space of the admissible filtering functions on $X$. Some theoretical results concerning this approach are proven and two experiments are presented. An experiment illustrates the application of the proposed technique to compare 1D-signals, when the invariance is expressed by the group of affinities, the group of orientation-preserving affinities, the group of isometries, the group of translations and the identity group. Another experiment shows how our technique can be used for image comparison.
187 - Patrizio Frosini 2010
The present lack of a stable method to compare persistent homology groups with torsion is a relevant problem in current research about Persistent Homology and its applications in Pattern Recognition. In this paper we introduce a pseudo-distance d_T t hat represents a possible solution to this problem. Indeed, d_T is a pseudo-distance between multidimensional persistent homology groups with coefficients in an Abelian group, hence possibly having torsion. Our main theorem proves the stability of the new pseudo-distance with respect to the change of the filtering function, expressed both with respect to the max-norm and to the natural pseudo-distance between topological spaces endowed with vector-valued filtering functions. Furthermore, we prove a result showing the relationship between d_T and the matching distance in the 1-dimensional case, when the homology coefficients are taken in a field and hence the comparison can be made.
211 - A. Costa , M. Farber 2015
In this paper we develop further the multi-parameter model of random simplicial complexes. Firstly, we give an intrinsic characterisation of the multi-parameter probability measure. Secondly, we show that in multi-parameter random simplicial complexe s the links of simplexes and their intersections are also multi-parameter random simplicial complexes. Thirdly, we find conditions under which a multi-parameter random simplicial complex is connected and simply connected.
Given a simplicial complex K with weights on its simplices and a chain on it, the Optimal Homologous Chain Problem (OHCP) is to find a chain with minimal weight that is homologous (over the integers) to the given chain. The OHCP is NP-complete, but i f the boundary matrix of K is totally unimodular (TU), it becomes solvable in polynomial time when modeled as a linear program (LP). We define a condition on the simplicial complex called non total-unimodularity neutralized, or NTU neutralized, which ensures that even when the boundary matrix is not TU, the OHCP LP must contain an integral optimal vertex for every input chain. This condition is a property of K, and is independent of the input chain and the weights on the simplices. This condition is strictly weaker than the boundary matrix being TU. More interestingly, the polytope of the OHCP LP may not be integral under this condition. Still, an integral optimal vertex exists for every right-hand side, i.e., for every input chain. Hence a much larger class of OHCP instances can be solved in polynomial time than previously considered possible. As a special case, we show that 2-complexes with trivial first homology group are guaranteed to be NTU neutralized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا