ﻻ يوجد ملخص باللغة العربية
This paper is devoted to the study of the existence and uniqueness of global admissible conservative weak solutions for the periodic single-cycle pulse equation. We first transform the equation into an equivalent semilinear system by introducing a new set of variables. Using the standard ordinary differential equation theory, we then obtain the global solution to the semilinear system. Next, returning to the original coordinates, we get the global admissible conservative weak solution for the periodic single-cycle pulse equation. Finally, given an admissible conservative weak solution, we find a equation to single out a unique characteristic curve through each initial point and prove the uniqueness of global admissible conservative weak solution without any additional assumptions.
The paper is concerned with the time-periodic (T-periodic) problem of the fractal Burgers equation with a T-periodic force on the real line. Based on the Galerkin approximates and Fourier series (transform) methods, we first prove the existence of T-
We show that the Hunter-Saxton equation $u_t+uu_x=frac14big(int_{-infty}^x dmu(t,z)- int^{infty}_x dmu(t,z)big)$ and $mu_t+(umu)_x=0$ has a unique, global, weak, and conservative solution $(u,mu)$ of the Cauchy problem on the line.
For a class of Kirchhoff functional, we first give a complete classification with respect to the exponent $p$ for its $L^2$-normalized critical points, and show that the minimizer of the functional, if exists, is unique up to translations. Secondly,
We study the existence and uniqueness of solution of a evolutionary partial differential equation originating from the continuum limit of a coupled process of totally asymmetric simple exclusion process (TASEP) and Langmuir kinetics (LK). In the fiel
In this paper, we consider unsaturated poroelasticity, i.e., coupled hydro-mechanical processes in unsaturated porous media, modeled by a non-linear extension of Biots quasi-static consolidation model. The coupled, elliptic-parabolic system of partia