ﻻ يوجد ملخص باللغة العربية
We study the existence and uniqueness of solution of a evolutionary partial differential equation originating from the continuum limit of a coupled process of totally asymmetric simple exclusion process (TASEP) and Langmuir kinetics (LK). In the fields of physics and biology, the TASEP-LK coupled process has been extensively studied by Monte Carlo simulations, numerical computations, and detailed experiments. However, no rigorous mathematical analysis so far has been given for the corresponding differential equations, especially the existence and uniqueness of their solutions. In this paper, the existence of the $W^{1,2}(0,1)$ weak steady-state solution is proved by the method of upper and lower solution, and the uniqueness by a generalized maximum principle. Also, the weak steady-state solution has $C^infty$ regularity, thereby being a classical solution. We further prove the global existence and uniqueness of the time-dependent solution in $C([0,1]times [0,+infty))cap C^{2,1}([0,1]times (0,+infty))$, which, for any continuous initial value, converges to the steady-state solution uniformly in space (global attractivity). Our results support the numerical calculations and Monte Carlo simulations, and provide theoretical foundations for the TASEP-LK coupled process, especially the most important phase diagram of particle density along the travel track under different model parameters, which is difficult because the boundary layers (at one or both boundaries) and domain wall (separating high and low particle densities) may appear as the length of the travel track tends to infinity. The methods used in this paper may be instructive for studies of the more general cases of the TASEP-LK process, such as the one with multiple travel tracks and/or multiple particle species.
This paper is devoted to the study of the existence and uniqueness of global admissible conservative weak solutions for the periodic single-cycle pulse equation. We first transform the equation into an equivalent semilinear system by introducing a ne
For a class of Kirchhoff functional, we first give a complete classification with respect to the exponent $p$ for its $L^2$-normalized critical points, and show that the minimizer of the functional, if exists, is unique up to translations. Secondly,
We provide a direct and elementary proof that the formula obtained in [MQR17] for the TASEP transition probabilities for general (one-sided) initial data solves the Kolmogorov backward equation. The same method yields the solution for the related PushASEP particle system.
In quantitative genetics, viscosity solutions of Hamilton-Jacobi equations appear naturally in the asymptotic limit of selection-mutation models when the population variance vanishes. They have to be solved together with an unknown function I(t) that
In this paper we prove the uniqueness of the saddle-shaped solution to the semilinear nonlocal elliptic equation $(-Delta)^gamma u = f(u)$ in $mathbb R^{2m}$, where $gamma in (0,1)$ and $f$ is of Allen-Cahn type. Moreover, we prove that this solution