ﻻ يوجد ملخص باللغة العربية
Let $mathcal{KC}_g ^k$ be the moduli stack of pairs $(S,C)$ with $S$ a $K3$ surface and $Csubset S$ a genus $g$ curve with divisibility $k$ in $mathrm{Pic}(S)$. In this article we study the forgetful map $c_g^k:(S,C) mapsto C$ from $mathcal{KC}_g ^k$ to $mathcal{M}_g$ for $k>1$. First we compute by geometric means the dimension of its general fibre. This turns out to be interesting only when $S$ is a complete intersection or a section of a Mukai variety. In the former case we find the existence of interesting Fano varieties extending $C$ in its canonical embedding. In the latter case this is related to delicate modular properties of the Mukai varieties. Next we investigate whether $c_g^k$ dominates the locus in $mathcal{M}_g$ of $k$-spin curves with the appropriate number of independent sections. We are able to do this only when $S$ is a complete intersection, and obtain in these cases some classification results for spin curves.
We show that the K-moduli spaces of log Fano pairs $(mathbb{P}^1timesmathbb{P}^1, cC)$ where $C$ is a $(4,4)$-curve and their wall crossings coincide with the VGIT quotients of $(2,4)$ complete intersection curves in $mathbb{P}^3$. This, together wit
We study the virtual geometry of the moduli spaces of curves and sheaves on K3 surfaces in primitive classes. Equivalences relating the reduced Gromov-Witten invariants of K3 surfaces to characteristic numbers of stable pairs moduli spaces are proven
The supersingular K3 surface X in characteristic 2 with Artin invariant 1 admits several genus 1 fibrations (elliptic and quasi-elliptic). We use a bijection between fibrations and definite even lattices of rank 20 and discriminant 4 to classify the
We describe a method to show that certain elliptic surfaces do not admit purely inseparable multisections (equivalently, that genus one curves over function fields admit no points over the perfect closure of the base field) and use it to show that an
We construct nontrivial L-equivalence between curves of genus one and degree five, and between elliptic surfaces of multisection index five. These results give the first examples of L-equivalence for curves (necessarily over non-algebraically closed