ترغب بنشر مسار تعليمي؟ اضغط هنا

Curves on K3 surfaces and modular forms

352   0   0.0 ( 0 )
 نشر من قبل R. P. Thomas
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the virtual geometry of the moduli spaces of curves and sheaves on K3 surfaces in primitive classes. Equivalences relating the reduced Gromov-Witten invariants of K3 surfaces to characteristic numbers of stable pairs moduli spaces are proven. As a consequence, we prove the Katz-Klemm-Vafa conjecture evaluating $lambda_g$ integrals (in all genera) in terms of explicit modular forms. Indeed, all K3 invariants in primitive classes are shown to be governed by modular forms. The method of proof is by degeneration to elliptically fibered rational surfaces. New formulas relating reduced virtual classes on K3 surfaces to standard virtual classes after degeneration are needed for both maps and sheaves. We also prove a Gromov-Witten/Pairs correspondence for toric 3-folds. Our approach uses a result of Kiem and Li to produce reduced classes. In Appendix A, we answer a number of questions about the relationship between the Kiem-Li approach, traditional virtual cycles, and symmetric obstruction theories. The interplay between the boundary geometry of the moduli spaces of curves, K3 surfaces, and modular forms is explored in Appendix B by A. Pixton.



قيم البحث

اقرأ أيضاً

For every known Hecke eigenform of weight 3 with rational eigenvalues we exhibit a K3 surface over QQ associated to the form. This answers a question asked independently by Mazur and van Straten. The proof builds on a classification of CM forms by the second author.
We construct non-geometric compactifications by using the F-theory dual of the heterotic string compactified on a two-torus, together with a close connection between Siegel modular forms of genus two and the equations of certain K3 surfaces. The modu lar group mixes together the Kahler, complex structure, and Wilson line moduli of the torus yielding weakly coupled heterotic string compactifications which have no large radius interpretation.
90 - Atsuhira Nagano 2021
We introduce a sequence of families of lattice polarized $K3$ surfaces. This sequence is closely related to complex reflection groups of exceptional type. Namely, we obtain modular forms coming from the inverse correspondences of the period mappings attached to our sequence. We study a non-trivial relation between our modular forms and invariants of complex reflection groups. Especially, we consider a family concerned with the Shepherd-Todd group of No.34 based on arithmetic properties of lattices and algebro-geometric properties of the period mappings.
We show that the K-moduli spaces of log Fano pairs $(mathbb{P}^1timesmathbb{P}^1, cC)$ where $C$ is a $(4,4)$-curve and their wall crossings coincide with the VGIT quotients of $(2,4)$ complete intersection curves in $mathbb{P}^3$. This, together wit h recent results by Laza-OGrady, implies that these K-moduli spaces form a natural interpolation between the GIT moduli space of $(4,4)$-curves on $mathbb{P}^1timesmathbb{P}^1$ and the Baily-Borel compactification of moduli of quartic hyperelliptic K3 surfaces.
177 - S. Katz , A. Klemm , 2014
For a K3 surface S, we study motivic invariants of stable pairs moduli spaces associated to 3-fold thickenings of S. We conjecture suitable deformation and divisibility invariances for the Betti realization. Our conjectures, together with earlier cal culations of Kawai-Yoshioka, imply a full determination of the theory in terms of the Hodge numbers of the Hilbert schemes of points of S. The work may be viewed as the third in a sequence of formulas starting with Yau-Zaslow and Katz-Klemm-Vafa (each recovering the former). Numerical data suggest the motivic invariants are linked to the Mathieu M_24 moonshine phenomena. The KKV formula and the Pairs/Noether-Lefschetz correspondence together determine the BPS counts of K3-fibered Calabi-Yau 3-folds in fiber classes in terms of modular forms. We propose a framework for a refined P/NL correspondence for the motivic invariants of K3-fibered CY 3-folds. For the STU model, a complete conjecture is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا