ﻻ يوجد ملخص باللغة العربية
Pfister and Sullivan proved that if a topological dynamical system $(X,T)$ satisfies almost product property and uniform separation property, then for each nonempty compact %convex subset $K$ of invariant measures, the entropy of saturated set $G_{K}$ satisfies begin{equation}label{Bowens topological entropy} h_{top}^{B}(T,G_{K})=inf{h(T,mu):muin K}, end{equation} where $h_{top}^{B}(T,G_{K})$ is Bowens topological entropy of $T$ on $G_{K}$, and $h(T,mu)$ is the Kolmogorov-Sinai entropy of $mu$. In this paper, we investigate topological complexity of $G_{K}$ by replacing Bowens topological entropy with upper capacity entropy and packing entropy and obtain the following formulas: begin{equation*} h_{top}^{UC}(T,G_{K})=h_{top}(T,X) mathrm{and} h_{top}^{P}(T,G_{K})=sup{h(T,mu):muin K}, end{equation*} where $h_{top}^{UC}(T,G_{K})$ is the upper capacity entropy of $T$ on $G_{K}$ and $h_{top}^{P}(T,G_{K})$ is the packing entropy of $T$ on $G_{K}.$ In the proof of these two formulas, uniform separation property is unnecessary.
We introduce the notion of localized topological pressure for continuous maps on compact metric spaces. The localized pressure of a continuous potential $varphi$ is computed by considering only those $(n,epsilon)$-separated sets whose statistical sum
In the context of non-uniformly expanding maps, possibly with the presence of a critical set, we prove the existence of finitely many ergodic equilibrium states for hyperbolic potentials. Moreover, the equilibrium states are expanding measures. The t
We study equilibrium measures (Kaenmaki measures) supported on self-affine sets generated by a finite collection of diagonal and anti-diagonal matrices acting on the plane and satisfying the strong separation property. Our main result is that such me
Our goal is to present the basic results on one-dimensional Gibbs and equilibrium states viewed as special invariant measures on symbolic dynamical systems, and then to describe without technicalities a sample of results they allowed to obtain for ce
We explore an approach to the conjecture of Katok on intermediate entropies that based on uniqueness of equilibrium states, provided the entropy function is upper semi-continuous. As an application, we prove Katoks conjecture for Ma~ne diffeomorphisms.