ترغب بنشر مسار تعليمي؟ اضغط هنا

Equilibrium states for non-uniformly expanding maps with critical sets

127   0   0.0 ( 0 )
 نشر من قبل Eduardo Santana
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the context of non-uniformly expanding maps, possibly with the presence of a critical set, we prove the existence of finitely many ergodic equilibrium states for hyperbolic potentials. Moreover, the equilibrium states are expanding measures. The technique consists in using an inducing scheme in a finite Markov structure with infinitely many symbols to code the dynamics to obtain an equilibrium state for the associated symbolic dynamics and then projecting it to obtain an equilibrium state for the original map.



قيم البحث

اقرأ أيضاً

We consider a robust class of random non-uniformly expanding local homeomorphisms and Holder continuous potentials with small variation. For each element of this class we develop the Thermodynamical Formalism and prove the existence and uniqueness of equilibrium states among non-uniformly expanding measures. Moreover, we show that these equilibrium states and the random topological pressure vary continuously in this setting.
For a Markov map of an interval or the circle with countably many branches and finitely many neutral periodic points, we establish conditional variational formulas for the mixed multifractal spectra of Birkhoff averages of countably many observables, in terms of the Hausdorff dimension of invariant probability measures. Using our results, we are able to exhibit new fractal-geometric results for backward continued fraction expansions of real numbers, answering in particular a question of Pollicott. Moreover, we establish formulas for multi-cusp winding spectra for the Bowen-Series maps associated with finitely generated free Fuchsian groups with parabolic elements.
167 - Yuri Lima , Carlos Matheus 2016
This work constructs symbolic dynamics for non-uniformly hyperbolic surface maps with a set of discontinuities $D$. We allow the derivative of points nearby $D$ to be unbounded, of the order of a negative power of the distance to $D$. Under natural g eometrical assumptions on the underlying space $M$, we code a set of non-uniformly hyperbolic orbits that do not converge exponentially fast to $D$. The results apply to non-uniformly hyperbolic planar billiards, e.g. Bunimovich stadia.
77 - David J.W. Simpson 2020
We show how the existence of three objects, $Omega_{rm trap}$, ${bf W}$, and $C$, for a continuous piecewise-linear map $f$ on $mathbb{R}^N$, implies that $f$ has a topological attractor with a positive Lyapunov exponent. First, $Omega_{rm trap} subs et mathbb{R}^N$ is trapping region for $f$. Second, ${bf W}$ is a finite set of words that encodes the forward orbits of all points in $Omega_{rm trap}$. Finally, $C subset T mathbb{R}^N$ is an invariant expanding cone for derivatives of compositions of $f$ formed by the words in ${bf W}$. We develop an algorithm that identifies these objects for two-dimensional homeomorphisms comprised of two affine pieces. The main effort is in the explicit construction of $Omega_{rm trap}$ and $C$. Their existence is equated to a set of computable conditions in a general way. This results in a computer-assisted proof of chaos throughout a relatively large regime of parameter space. We also observe how the failure of $C$ to be expanding can coincide with a bifurcation of $f$. Lyapunov exponents are evaluated using one-sided directional derivatives so that forward orbits that intersect a switching manifold (where $f$ is not differentiable) can be included in the analysis.
304 - John W. Robertson 2017
The goal of this paper is to construct invariant dynamical objects for a (not necessarily invertible) smooth self map of a compact manifold. We prove a result that takes advantage of differences in rates of expansion in the terms of a sheaf cohomolog ical long exact sequence to create unique lifts of finite dimensional invariant subspaces of one term of the sequence to invariant subspaces of the preceding term. This allows us to take invariant cohomological classes and under the right circumstances construct unique currents of a given type, including unique measures of a given type, that represent those classes and are invariant under pullback. A dynamically interesting self map may have a plethora of invariant measures, so the uniquess of the constructed currents is important. It means that if local growth is not too big compared to the growth rate of the cohomological class then the expanding cohomological class gives sufficient marching orders to the system to prohibit the formation of any other such invariant current of the same type (say from some local dynamical subsystem). Because we use subsheaves of the sheaf of currents we give conditions under which a subsheaf will have the same cohomology as the sheaf containing it. Using a smoothing argument this allows us to show that the sheaf cohomology of the currents under consideration can be canonically identified with the deRham cohomology groups. Our main theorem can be applied in both the smooth and holomorphic setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا