ﻻ يوجد ملخص باللغة العربية
Brain tumours are masses of abnormal cells that can grow in an uncontrolled way in the brain. There are different types of malignant brain tumours. Gliomas are malignant brain tumours that grow from glial cells and are identified as astrocytoma, oligodendroglioma, and ependymoma. We study a mathematical model that describes glia-neuron interaction, glioma, and chemotherapeutic agent. In this work, we consider drug sensitive and resistant glioma cells. We show that continuous and pulsed chemotherapy can kill glioma cells with a minimal loss of neurons.
We study a five-compartment mathematical model originally proposed by Kuznetsov et al. (1994) to investigate the effect of nonlinear interactions between tumour and immune cells in the tumour microenvironment, whereby immune cells may induce tumour c
In this paper we analyse a previously proposed cell-based model of glioblastoma (brain tumour) growth, which is based on the assumption that the cancer cells switch phenotypes between a proliferative and motile state (Gerlee and Nelander, PLoS Comp.
Bone remodelling maintains the functionality of skeletal tissue by locally coordinating bone-resorbing cells (osteoclasts) and bone-forming cells (osteoblasts) in the form of Bone Multicellular Units (BMUs). Understanding the emergence of such struct
Bone is a biomaterial undergoing continuous renewal. The renewal process is known as bone remodelling and is operated by bone-resorbing cells (osteoclasts) and bone-forming cells (osteoblasts). Both biochemical and biomechanical regulatory mechanisms
Antimicrobial resistance is an emerging global health crisis that is undermining advances in modern medicine and, if unmitigated, threatens to kill 10 million people per year worldwide by 2050. Research over the last decade has demonstrated that the