ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying and characterising the impact of excitability in a mathematical model of tumour-immune interactions

119   0   0.0 ( 0 )
 نشر من قبل Ana Osojnik
 تاريخ النشر 2019
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a five-compartment mathematical model originally proposed by Kuznetsov et al. (1994) to investigate the effect of nonlinear interactions between tumour and immune cells in the tumour microenvironment, whereby immune cells may induce tumour cell death, and tumour cells may inactivate immune cells. Exploiting a separation of timescales in the model, we use the method of matched asymptotics to derive a new two-dimensional, long-timescale, approximation of the full model, which differs from the quasi-steady-state approximation introduced by Kuznetsov et al. (1994), but is validated against numerical solutions of the full model. Through a phase-plane analysis, we show that our reduced model is excitable, a feature not traditionally associated with tumour-immune dynamics. Through a systematic parameter sensitivity analysis, we demonstrate that excitability generates complex bifurcating dynamics in the model. These are consistent with a variety of clinically observed phenomena, and suggest that excitability may underpin tumour-immune interactions. The model exhibits the three stages of immunoediting - elimination, equilibrium, and escape, via stable steady states with different tumour cell concentrations. Such heterogeneity in tumour cell numbers can stem from variability in initial conditions and/or model parameters that control the properties of the immune system and its response to the tumour. We identify different biophysical parameter targets that could be manipulated with immunotherapy in order to control tumour size, and we find that preferred strategies may differ between patients depending on the strength of their immune systems, as determined by patient-specific values of associated model parameters.



قيم البحث

اقرأ أيضاً

Brain tumours are masses of abnormal cells that can grow in an uncontrolled way in the brain. There are different types of malignant brain tumours. Gliomas are malignant brain tumours that grow from glial cells and are identified as astrocytoma, olig odendroglioma, and ependymoma. We study a mathematical model that describes glia-neuron interaction, glioma, and chemotherapeutic agent. In this work, we consider drug sensitive and resistant glioma cells. We show that continuous and pulsed chemotherapy can kill glioma cells with a minimal loss of neurons.
In the last decades, the interest to understand the connection between brain and body has grown notably. For example, in psychoneuroimmunology many studies associate stress, arising from many different sources and situations, to changes in the immune system from the medical or immunological point of view as well as from the biochemical one. In this paper we identify important behaviours of this interplay between the immune system and stress from medical studies and seek to represent them qualitatively in a paradigmatic, yet simple, mathematical model. To that end we develop a differential equation model with two equations for infection level and immune system, which integrates the effects of stress as an additional parameter. We are able to reproduce a stable healthy state for little stress, an oscillatory state between healthy and infected states for high stress, and a burn-out or stable sick state for extremely high stress. The mechanism between the different dynamics is controlled by two saddle-node in cycle (SNIC) bifurcations. Furthermore, our model is able to capture an induced infection upon dropping from moderate to low stress, and it predicts increasing infection periods upon increasing before eventually reaching a burn-out state.
100 - Augusto Gonzalez 2016
Simple ideas, endowed from the mathematical theory of control, are used in order to analyze in general grounds the human immune system. The general principles are minimization of the pathogen load and economy of resources. They should constrain the p arameters describing the immune system. In the simplest linear model, for example, where the response is proportional to the load, the annihilation rate of pathogens in any tissue should be greater than the pathogens average rate of growth. When nonlinearities are added, a reference value for the number of pathogens is set, and a stability condition emerges, which relates strength of regular threats, barrier height and annihilation rate. The stability condition allows a qualitative comparison between tissues. On the other hand, in cancer immunity, the linear model leads to an expression for the lifetime risk, which accounts for both the effects of carcinogens (endogenous or external) and the immune response.
Until recently many studies of bone remodeling at the cellular level have focused on the behavior of mature osteoblasts and osteoclasts, and their respective precursor cells, with the role of osteocytes and bone lining cells left largely unexplored. This is particularly true with respect to the mathematical modeling of bone remodeling. However, there is increasing evidence that osteocytes play important roles in the cycle of targeted bone remodeling, in serving as a significant source of RANKL to support osteoclastogenesis, and in secreting the bone formation inhibitor sclerostin. Moreover, there is also increasing interest in sclerostin, an osteocyte-secreted bone formation inhibitor, and its role in regulating local response to changes in the bone microenvironment. Here we develop a cell population model of bone remodeling that includes the role of osteocytes, sclerostin, and allows for the possibility of RANKL expression by osteocyte cell populations. This model extends and complements many of the existing mathematical models for bone remodeling but can be used to explore aspects of the process of bone remodeling that were previously beyond the scope of prior modeling work. Through numerical simulations we demonstrate that our model can be used to theoretically explore many of the most recent experimental results for bone remodeling, and can be utilized to assess the effects of novel bone-targeting agents on the bone remodeling process.
In this paper we analyse a previously proposed cell-based model of glioblastoma (brain tumour) growth, which is based on the assumption that the cancer cells switch phenotypes between a proliferative and motile state (Gerlee and Nelander, PLoS Comp. Bio., 8(6) 2012). The dynamics of this model can be described by a system of partial differential equations, which exhibits travelling wave solutions whose wave speed depends crucially on the rates of phenotypic switching. We show that under certain conditions on the model parameters, a closed form expression of the wave speed can be obtained, and using singular perturbation methods we also derive an approximate expression of the wave front shape. These new analytical results agree with simulations of the cell-based model, and importantly show that the inverse relationship between wave front steepness and speed observed for the Fisher equation no longer holds when phenotypic switching is considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا