ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient entanglement generation and detection of generalized stabilizer states

290   0   0.0 ( 0 )
 نشر من قبل Xiongfeng Ma
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The generation and verification of large-scale entanglement are essential to the development of quantum technologies. In this paper, we present an efficient scheme to generate genuine multipartite entanglement of a large number of qubits by using the Heisenberg interaction. This method can be conveniently implemented in various physical platforms, including superconducting, trapped-ion, and cold-atom systems. In order to characterize the entanglement of the output quantum state, we generalize the stabilizer formalism and develop an entanglement witness method. In particular, we design a generic searching algorithm to optimize entanglement witness with a minimal number of measurement settings under a given noise level. From the perspective of practical applications, we numerically study the trade-off between the experiment efficiency and the detection robustness.



قيم البحث

اقرأ أيضاً

Consider a stabilizer state on $n$ qudits, each of dimension $D$ with $D$ being a prime or a squarefree integer, divided into three mutually disjoint sets or parts. Generalizing a result of Bravyi et al. [J. Math. Phys. textbf{47}, 062106 (2006)] for qubits (D=2), we show that up to local unitaries on the three parts the state can be written as a tensor product of unentangled single-qudit states, maximally entangled EPR pairs, and tripartite GHZ states. We employ this result to obtain a complete characterization of the properties of a class of channels associated with stabilizer error-correcting codes, along with their complementary channels.
58 - Grzegorz Chimczak 2004
We show how the entanglement of two atoms, trapped in distant separate cavities, can be generated with arbitrarily high probability of success. The scheme proposed employs sudden excitation of the atoms proving that the weakly driven condition is not necessary to obtain the success rate close to unity. The modified scheme works properly even if each cavity contains many atoms interacting with the cavity modes. We also show that our method is robust against the spontaneous atomic decay.
63 - S. Glancy , E. Knill , 2006
We present a method for multipartite entanglement purification of any stabilizer state shared by several parties. In our protocol each party measures the stabilizer operators of a quantum error-correcting code on his or her qubits. The parties exchan ge their measurement results, detect or correct errors, and decode the desired purified state. We give sufficient conditions on the stabilizer codes that may be used in this procedure and find that Steanes seven-qubit code is the smallest error-correcting code sufficient to purify any stabilizer state. An error-detecting code that encodes two qubits in six can also be used to purify any stabilizer state. We further specify which classes of stabilizer codes can purify which classes of stabilizer states.
159 - D.H. Zhang , H. Fan , 2009
The entanglement properties of a multiparty pure state are invariant under local unitary transformations. The stabilizer dimension of a multiparty pure state characterizes how many types of such local unitary transformations existing for the state. W e find that the stabilizer dimension of an $n$-qubit ($nge 2$) graph state is associated with three specific configurations in its graph. We further show that the stabilizer dimension of an $n$-qubit ($nge 3$) graph state is equal to the degree of irreducible two-qubit correlations in the state.
We show that not all 4-party pure states are GHZ reducible (i.e., can be generated reversibly from a combination of 2-, 3- and 4-party maximally entangled states by local quantum operations and classical communication asymptotically) through an examp le, we also present some properties of the relative entropy of entanglement for those 3-party pure states that are GHZ reducible, and then we relate these properties to the additivity of the relative entropy of entanglement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا