ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement Purification of Any Stabilizer State

64   0   0.0 ( 0 )
 نشر من قبل Scott Glancy
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method for multipartite entanglement purification of any stabilizer state shared by several parties. In our protocol each party measures the stabilizer operators of a quantum error-correcting code on his or her qubits. The parties exchange their measurement results, detect or correct errors, and decode the desired purified state. We give sufficient conditions on the stabilizer codes that may be used in this procedure and find that Steanes seven-qubit code is the smallest error-correcting code sufficient to purify any stabilizer state. An error-detecting code that encodes two qubits in six can also be used to purify any stabilizer state. We further specify which classes of stabilizer codes can purify which classes of stabilizer states.



قيم البحث

اقرأ أيضاً

We propose an entanglement purification scheme based on material qubits and ancillary coherent multiphoton states. We consider a typical QED scenario where material qubits implemented by two-level atoms fly sequentially through a cavity and interact resonantly with a single mode of the radiation field. We explore the theoretical possibilities of realizing a high-fidelity two-qubit quantum operation necessary for the purification protocol with the help of a postselective balanced homodyne photodetection. We demonstrate that the obtained probabilistic quantum operation can be used as a bilateral operation in the proposed purification scheme. It is shown that the probabilistic nature of this quantum operation is counterbalanced in the last step of the scheme where qubits are not discarded after inadequate qubit measurements. As this protocol requires present-day experimental setups and generates high-fidelity entangled pairs with high repetition rates, it may offer interesting perspectives for applications in quantum information theory.
Recently Xiao et al. proposed a scheme for entanglement purification based on doubly entangled photon states (Phys. Rev. A 77(2008) 042315). We modify their scheme for improving the efficiency of entanglement purification. This modified scheme contai ns two steps, i.e., the bit-flip error correction and the entanglement purification of phase-flip errors. All the photon pairs in the first step can be kept as all the bit-flip errors are corrected. For purifying the phase-flip errors, a wavelength conversion process is needed. This scheme has the advantage of high efficiency and it requires the original fidelity of the entangled state wanted fay lower than other schemes, which makes it more feasible in a practical application.
Single-photon entanglement is a simple form of entanglement that exists between two spatial modes sharing a single photon. Despite its elementary form, it provides a resource as useful as polarization-entangled photons and it can be used for quantum teleportation and entanglement swapping operations. Here, we report the first experiment where single-photon entanglement is purified with a simple linear-optics based protocol. Besides its conceptual interest, this result might find applications in long distance quantum communication based on quantum repeaters.
218 - Rui Chao , Ben W. Reichardt 2019
Conventional fault-tolerant quantum error-correction schemes require a number of extra qubits that grows linearly with the codes maximum stabilizer generator weight. For some common distance-three codes, the recent flag paradigm uses just two extra q ubits. Chamberland and Beverland (2018) provide a framework for flag error correction of arbitrary-distance codes. However, their construction requires conditions that only some code families are known to satisfy. We give a flag error-correction scheme that works for any stabilizer code, unconditionally. With fast qubit measurement and reset, it uses $d+1$ extra qubits for a distance-$d$ code.
145 - W. Dur , H. J. Briegel 2007
We give a review on entanglement purification for bipartite and multipartite quantum states, with the main focus on theoretical work carried out by our group in the last couple of years. We discuss entanglement purification in the context of quantum communication, where we emphasize its close relation to quantum error correction. Various bipartite and multipartite entanglement purification protocols are discussed, and their performance under idealized and realistic conditions is studied. Several applications of entanglement purification in quantum communication and computation are presented, which highlights the fact that entanglement purification is a fundamental tool in quantum information processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا