ﻻ يوجد ملخص باللغة العربية
We derive a formula that defines quantum fluctuations of energy in subsystems of a hot relativistic gas. For small subsystem sizes we find substantial increase of fluctuations compared to those known from standard thermodynamic considerations. However, if the size of the subsystem is sufficiently large, we reproduce the result for energy fluctuations in the canonical ensemble. Our results are subsequently used in the context of relativistic heavy-ion collisions to introduce limitations of the concepts such as classical energy density or fluid element. In the straightforward way, our formula can be applied in other fields of physics, wherever one deals with hot and relativistic matter.
Quantum features of the baryon number fluctuations in subsystems of a hot and dense relativistic gas of fermions are analyzed. We find that the fluctuations in small systems are significantly increased compared to their values known from the statisti
Explicit expressions for quantum fluctuations of energy in subsystems of a hot relativistic gas of spin-$1/2$ particles are derived. The results depend on the form of the energy-momentum tensor used in the calculations, which is a feature described a
The second-order hydrodynamic equations for evolution of shear and bulk viscous pressure have been derived within the framework of covariant kinetic theory based on the effective fugacity quasiparticle model. The temperature-dependent fugacity parame
We study systematically the topological charge density and the chiral density correlations in the early stage of high energy nuclear collisions: the intial condition is given by the McLerran-Venugopalan model and the evolution of the gluon fields is
Bethe-Salpeter equation, for massless exchange and large fine structure constant $alpha>pi/4$, in addition to the Balmer series, provides another (abnormal) series of energy levels which are not given by the Schrodinger equation. So strong field can