ﻻ يوجد ملخص باللغة العربية
Quantum features of the baryon number fluctuations in subsystems of a hot and dense relativistic gas of fermions are analyzed. We find that the fluctuations in small systems are significantly increased compared to their values known from the statistical physics, and diverge in the limit where the system size goes to zero. The numerical results obtained for a broad range of the thermodynamic parameters expected in heavy-ion collisions are presented. They can be helpful to interpret and shed new light on the experimental data.
Explicit expressions for quantum fluctuations of energy in subsystems of a hot relativistic gas of spin-$1/2$ particles are derived. The results depend on the form of the energy-momentum tensor used in the calculations, which is a feature described a
We derive a formula that defines quantum fluctuations of energy in subsystems of a hot relativistic gas. For small subsystem sizes we find substantial increase of fluctuations compared to those known from standard thermodynamic considerations. Howeve
We present results on the second-order fluctuations of and correlations among net baryon number, electric charge and strangeness in (2+1)-flavor lattice QCD in the presence of a background magnetic field. Simulations are performed using the tree-leve
In this talk, we report on two recent studies of relativistic nucleon-nucleon and hyperon-nucleon interactions in covariant chiral perturbation theory, where they are constructed up to leading order. The relevant unknown low energy constants are fixe
The description of dynamical fluctuations near the QCD critical point in heavy-ion collisions is crucial for understanding the existing and upcoming experimental data from the beam energy scan programs. In this talk we discuss the evolution of fluctu