ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum baryon number fluctuations in subsystems of a hot and dense relativistic gas of fermions

56   0   0.0 ( 0 )
 نشر من قبل Rajeev Singh Mr.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum features of the baryon number fluctuations in subsystems of a hot and dense relativistic gas of fermions are analyzed. We find that the fluctuations in small systems are significantly increased compared to their values known from the statistical physics, and diverge in the limit where the system size goes to zero. The numerical results obtained for a broad range of the thermodynamic parameters expected in heavy-ion collisions are presented. They can be helpful to interpret and shed new light on the experimental data.



قيم البحث

اقرأ أيضاً

Explicit expressions for quantum fluctuations of energy in subsystems of a hot relativistic gas of spin-$1/2$ particles are derived. The results depend on the form of the energy-momentum tensor used in the calculations, which is a feature described a s pseudo-gauge dependence. However, for sufficiently large subsystems the results obtained in different pseudo-gauges converge and agree with the canonical-ensemble formula known from statistical physics. As different forms of the energy-momentum tensor of a gas are a priori equivalent, our finding suggests that the concept of quantum fluctuations of energy in very small thermodynamic systems is pseudo-gauge dependent. On the practical side, the results of our calculations determine a scale of coarse graining for which the choice of the pseudo-gauge becomes irrelevant.
We derive a formula that defines quantum fluctuations of energy in subsystems of a hot relativistic gas. For small subsystem sizes we find substantial increase of fluctuations compared to those known from standard thermodynamic considerations. Howeve r, if the size of the subsystem is sufficiently large, we reproduce the result for energy fluctuations in the canonical ensemble. Our results are subsequently used in the context of relativistic heavy-ion collisions to introduce limitations of the concepts such as classical energy density or fluid element. In the straightforward way, our formula can be applied in other fields of physics, wherever one deals with hot and relativistic matter.
108 - H.-T. Ding , S.-T. Li , Q. Shi 2021
We present results on the second-order fluctuations of and correlations among net baryon number, electric charge and strangeness in (2+1)-flavor lattice QCD in the presence of a background magnetic field. Simulations are performed using the tree-leve l improved gauge action and the highly improved staggered quark (HISQ) action with a fixed scale approach ($asimeq$ 0.117 fm). The light quark mass is set to be 1/10 of the physical strange quark mass and the corresponding pion mass is about 220 MeV at vanishing magnetic field. Simulations are performed on $32^3times N_tau$ lattices with 9 values of $N_tau$ varying from 96 to 6 corresponding to temperatures ranging from zero up to 281 MeV. The magnetic field strength $eB$ is simulated with 15 different values up to $sim$2.5 GeV$^2$ at each nonzero temperature. We find that quadratic fluctuations and correlations do not show any singular behavior at zero temperature in the current window of $eB$ while they develop peaked structures at nonzero temperatures as $eB$ grows. By comparing the electric charge-related fluctuations and correlations with hadron resonance gas model calculations and ideal gas limits we find that the changes in degrees of freedom start at lower temperatures in stronger magnetic fields. Significant effects induced by magnetic fields on the isospin symmetry and ratios of net baryon number and baryon-strangeness correlation to strangeness fluctuation are observed, which could be useful for probing the existence of a magnetic field in heavy-ion collision experiments.
70 - Xiu-Lei Ren , Kai-Wen Li , 2018
In this talk, we report on two recent studies of relativistic nucleon-nucleon and hyperon-nucleon interactions in covariant chiral perturbation theory, where they are constructed up to leading order. The relevant unknown low energy constants are fixe d by fitting to the nucleon-nucleon and hyperon-nucleon scattering data. It is shown that these interactions can describe the scattering data with a quality similar to their next-to-leading order non-relativistic counterparts. These studies show that it is technically feasible to construct relativist baryon-baryon interactions, and in addition, after further refinements, these interactions may provide important inputs to {it ab initio} relativistic nuclear structure and reaction studies and help improve our understanding of low energy strong interactions.
The description of dynamical fluctuations near the QCD critical point in heavy-ion collisions is crucial for understanding the existing and upcoming experimental data from the beam energy scan programs. In this talk we discuss the evolution of fluctu ations of the net-baryon density as given by a stochastic diffusion equation. We study equilibrium as well as dynamical systems for which we can show the impact of nonequilibrium effects on the second-order moment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا