ﻻ يوجد ملخص باللغة العربية
We consider a particle diffusing outside a compact planar set and investigate its boundary local time $ell_t$, i.e., the rescaled number of encounters between the particle and the boundary up to time $t$. In the case of a disk, this is also the (rescaled) number of encounters of two diffusing circular particles in the plane. For that case, we derive explicit integral representations for the probability density of the boundary local time $ell_t$ and for the probability density of the first-crossing time of a given threshold by $ell_t$. The latter density is shown to exhibit a very slow long-time decay due to extremely long diffusive excursions between encounters. We briefly discuss some practical consequences of this behavior for applications in chemical physics and biology.
Suppose that a $d$-dimensional domain is filled with a gas of (in general, interacting) diffusive particles with density $n_0$. A particle is absorbed whenever it reaches the domain boundary. Employing macroscopic fluctuation theory, we evaluate the
The time which a diffusing particle spends in a certain region of space is known as the occupation time, or the residence time. Recently the joint occupation time statistics of an ensemble of non-interacting particles was addressed using the single-p
We derive an approximate but fully explicit formula for the mean first-passage time (MFPT) to a small absorbing target of arbitrary shape in a general elongated domain in the plane. Our approximation combines conformal mapping, boundary homogenisatio
We investigate how confinement may drastically change both the probability density of the first-encounter time and the related survival probability in the case of two diffusing particles. To obtain analytical insights into this problem, we focus on t
We consider a one-dimensional infinite lattice where at each site there sits an agent carrying a velocity, which is drawn initially for each agent independently from a common distribution. This system evolves as a Markov process where a pair of agent