ﻻ يوجد ملخص باللغة العربية
We consider a one-dimensional infinite lattice where at each site there sits an agent carrying a velocity, which is drawn initially for each agent independently from a common distribution. This system evolves as a Markov process where a pair of agents at adjacent sites exchange their positions with a specified rate, while retaining their respective velocities, only if the velocity of the agent on the left site is higher. We study the statistics of the net displacement of a tagged agent $m(t)$ on the lattice, in a given duration $t$, for two different kinds of rates: one in which a pair of agents at sites $i$ and $i+1$ exchange their sites with rate $1$, independent of the velocity difference between the neighbors, and another in which a pair exchange their sites with a rate equal to their relative speed. In both cases, we find $m(t)sim t$ for large $t$. In the first case, for a randomly picked agent, $m/t$, in the limit $tto infty$, is distributed uniformly on $[-1,1]$ for all continuous distributions of velocities. In the second case, the distribution is given by the distribution of the velocities itself, with a Galilean shift by the mean velocity. We also find the large time approach to the limiting forms and compare the results with numerical simulations. In contrast, if the exchange of velocities occurs at unit rate, independent of their values, and irrespective of which is faster, $m(t)/t$ for large $t$ is has a gaussian distribution, whose width varies as $t^{-1/2}$.
In a series of pump and probe experiments, we study the lifetime statistics of a quantum chaotic resonator when the number of open channels is greater than one. Our design embeds a stadium billiard into a two dimensional photonic crystal realized on
We derive analogues of the Jarzynski equality and Crooks relation to characterise the nonequilibrium work associated with changes in the spring constant of an overdamped oscillator in a quadratically varying spatial temperature profile. The stationar
We consider a particle diffusing outside a compact planar set and investigate its boundary local time $ell_t$, i.e., the rescaled number of encounters between the particle and the boundary up to time $t$. In the case of a disk, this is also the (resc
Motivated by experiments on splitting one-dimensional quasi-condensates, we study the statistics of the work done by a quantum quench in a bosonic system. We discuss the general features of the probability distribution of the work and focus on its be
We study the statistical properties of jump processes in a bounded domain that are driven by Poisson white noise. We derive the corresponding Kolmogorov-Feller equation and provide a general representation for its stationary solutions. Exact stationa