ﻻ يوجد ملخص باللغة العربية
Kitaevs toric code is an exactly solvable model with $mathbb{Z}_2$-topological order, which has potential applications in quantum computation and error correction. However, a direct experimental realization remains an open challenge. Here, we propose a building block for $mathbb{Z}_2$ lattice gauge theories coupled to dynamical matter and demonstrate how it allows for an implementation of the toric-code ground state and its topological excitations. This is achieved by introducing separate matter excitations on individual plaquettes, whose motion induce the required plaquette terms. The proposed building block is realized in the second-order coupling regime and is well suited for implementations with superconducting qubits. Furthermore, we propose a pathway to prepare topologically non-trivial initial states during which a large gap on the order of the underlying coupling strength is present. This is verified by both analytical arguments and numerical studies. Moreover, we outline experimental signatures of the ground-state wavefunction and introduce a minimal braiding protocol. Detecting a $pi$-phase shift between Ramsey fringes in this protocol reveals the anyonic excitations of the toric-code Hamiltonian in a system with only three triangular plaquettes. Our work paves the way for realizing non-Abelian anyons in analog quantum simulators.
Under the perspective of realizing analog quantum simulations of lattice gauge theories, ladder geometries offer an intriguing playground, relevant for ultracold atom experiments. Here, we investigate Hamiltonian lattice gauge theories defined in two
Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable qu
Kitaevs quantum double models in 2D provide some of the most commonly studied examples of topological quantum order. In particular, the ground space is thought to yield a quantum error-correcting code. We offer an explicit proof that this is the case
Gauge field theories play a central role in modern physics and are at the heart of the Standard Model of elementary particles and interactions. Despite significant progress in applying classical computational techniques to simulate gauge theories, it