In $SU(N)$ gauge theory, it is argued recently that there exists a mixed anomaly between the CP symmetry and the 1-form $mathbb{Z}_N$ symmetry at $theta=pi$, and the anomaly matching requires CP to be spontaneously broken at $theta=pi$ if the system
is in the confining phase. In this paper, we elaborate on this discussion by examining the large volume behavior of the partition functions of the $SU(N)/mathbb{Z}_N$ theory on $T^4$ a la t Hooft. The periodicity of the partition function in $theta$, which is not $2pi$ due to fractional instanton numbers, suggests the presence of a phase transition at $theta=pi$. We propose lattice simulations to study the distribution of the instanton number in $SU(N)/mathbb{Z}_N$ theories. A characteristic shape of the distribution is predicted when the system is in the confining phase. The measurements of the distribution may be useful in understanding the phase structure of the theory.
Kitaevs toric code is an exactly solvable model with $mathbb{Z}_2$-topological order, which has potential applications in quantum computation and error correction. However, a direct experimental realization remains an open challenge. Here, we propose
a building block for $mathbb{Z}_2$ lattice gauge theories coupled to dynamical matter and demonstrate how it allows for an implementation of the toric-code ground state and its topological excitations. This is achieved by introducing separate matter excitations on individual plaquettes, whose motion induce the required plaquette terms. The proposed building block is realized in the second-order coupling regime and is well suited for implementations with superconducting qubits. Furthermore, we propose a pathway to prepare topologically non-trivial initial states during which a large gap on the order of the underlying coupling strength is present. This is verified by both analytical arguments and numerical studies. Moreover, we outline experimental signatures of the ground-state wavefunction and introduce a minimal braiding protocol. Detecting a $pi$-phase shift between Ramsey fringes in this protocol reveals the anyonic excitations of the toric-code Hamiltonian in a system with only three triangular plaquettes. Our work paves the way for realizing non-Abelian anyons in analog quantum simulators.
Quantum simulation has the potential to investigate gauge theories in strongly-interacting regimes, which are up to now inaccessible through conventional numerical techniques. Here, we take a first step in this direction by implementing a Floquet-bas
ed method for studying $mathbb{Z}_2$ lattice gauge theories using two-component ultracold atoms in a double-well potential. For resonant periodic driving at the on-site interaction strength and an appropriate choice of the modulation parameters, the effective Floquet Hamiltonian exhibits $mathbb{Z}_2$ symmetry. We study the dynamics of the system for different initial states and critically contrast the observed evolution with a theoretical analysis of the full time-dependent Hamiltonian of the periodically-driven lattice model. We reveal challenges that arise due to symmetry-breaking terms and outline potential pathways to overcome these limitations. Our results provide important insights for future studies of lattice gauge theories based on Floquet techniques.
We study a four-dimensional $U(1)$ gauge theory with the $theta$ angle, which was originally proposed by Cardy and Rabinovici. It is known that the model has the rich phase diagram thanks to the presence of both electrically and magnetically charged
particles. We discuss the topological nature of the oblique confinement phase of the model at $theta=pi$, and show how its appearance can be consistent with the anomaly constraint. We also construct the $SL(2,mathbb{Z})$ self-dual theory out of the Cardy-Rabinovici model by gauging a part of its one-form symmetry. This self-duality has a mixed t Hooft anomaly with gravity, and its implications on the phase diagram is uncovered. As the model shares the same global symmetry and t Hooft anomaly with those of $SU(N)$ Yang-Mills theory, studying its topological aspects would provide us more hints to explore possible dynamics of non-Abelian gauge theories with nonzero $theta$ angles.
Artificial magnetic fields and spin-orbit couplings have been recently generated in ultracold gases in view of realizing topological states of matter and frustrated magnetism in a highly-controllable environment. Despite being dynamically tunable, su
ch artificial gauge fields are genuinely classical and exhibit no back-action from the neutral particles. Here we go beyond this paradigm, and demonstrate how quantized dynamical gauge fields can be created in mixtures of ultracold atoms in optical lattices. Specifically, we propose a protocol by which atoms of one species carry a magnetic flux felt by another species, hence realizing an instance of flux-attachment. This is obtained by combining coherent lattice modulation techniques with strong Hubbard interactions. We demonstrate how this setting can be arranged so as to implement lattice models displaying a local Z2 gauge symmetry, both in one and two dimensions. We also provide a detailed analysis of a ladder toy model, which features a global Z2 symmetry, and reveal the phase transitions that occur both in the matter and gauge sectors. Mastering flux-attachment in optical lattices envisages a new route towards the realization of strongly-correlated systems with properties dictated by an interplay of dynamical matter and gauge fields.
G. Magnifico
,D. Vodola
,E. Ercolessi
.
(2019)
.
"$mathbb{Z}_N$ gauge theories coupled to topological fermions: QED$_2$ with a quantum-mechanical $theta$ angle"
.
Giuseppe Magnifico
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا