ﻻ يوجد ملخص باللغة العربية
The accurate prediction of solid-solid structural phase transitions at finite temperature is a challenging task, since the dynamics is so slow that direct simulations of the phase transitions by first-principles (FP) methods are typically not possible. Here, we study the $alpha$-$beta$ phase transition of Zr at ambient pressure by means of on-the-fly machine-learned force fields. These are automatically generated during FP molecular dynamics (MD) simulations without the need of human intervention, while retaining almost FP accuracy. Our MD simulations successfully reproduce the first-order displacive nature of the phase transition, which is manifested by an abrupt jump of the volume and a cooperative displacement of atoms at the phase transition temperature. The phase transition is further identified by the simulated x-ray powder diffraction, and the predicted phase transition temperature is in reasonable agreement with experiment. Furthermore, we show that using a singular value decomposition and pseudo inversion of the design matrix generally improves the machine-learned force field compared to the usual inversion of the squared matrix in the regularized Bayesian regression.
We present an approach to generate machine-learned force fields (MLFF) with beyond density functional theory (DFT) accuracy. Our approach combines on-the-fly active learning and $Delta$-machine learning in order to generate an MLFF for zirconia based
The magnetic-field-temperature phase diagram of solid oxygen is investigated by the adiabatic magnetocaloric effect (MCE) measurement with pulsed magnetic fields. Relatively large temperature decrease with hysteresis is observed at just below the $be
Phase stabilities of Hf-Si-O and Zr-Si-O have been studied with first-principles and thermodynamic modeling. From the obtained thermodynamic descriptions, phase diagrams pertinent to thin film processing were calculated. We found that the relative st
The transformation between the metallic ($beta$) and semi-conducting ($alpha$) allotropes of tin is still not well understood. The phase transition temperature stated in the literature, 286.2 K, seems to be inconsistent with recent calorimetric measu
We show that epitaxial (001) thin films of multiferroic bismuth ferrite BiFeO3 are monoclinic at room temperature instead of tetragonal or Rhombohedral as reported earlier . We report a orthorhombic order-disorder beta-phase between 820C and 950C con