ﻻ يوجد ملخص باللغة العربية
The goal of this chapter is to illustrate a generalization of the Fibonacci word to the case of 2-dimensional configurations on $mathbb{Z}^2$. More precisely, we consider a particular subshift of $mathcal{A}^{mathbb{Z}^2}$ on the alphabet $mathcal{A}={0,dots,18}$ for which we give three characterizations: as the subshift $mathcal{X}_phi$ generated by a 2-dimensional morphism $phi$ defined on $mathcal{A}$; as the Wang shift $Omega_mathcal{U}$ defined by a set $mathcal{U}$ of 19 Wang tiles; as the symbolic dynamical system $mathcal{X}_{mathcal{P}_mathcal{U},R_mathcal{U}}$ representing the orbits under some $mathbb{Z}^2$-action $R_mathcal{U}$ defined by rotations on $mathbb{T}^2$ and coded by some topological partition $mathcal{P}_mathcal{U}$ of $mathbb{T}^2$ into 19 polygonal atoms. We prove their equality $Omega_mathcal{U} =mathcal{X}_phi=mathcal{X}_{mathcal{P}_mathcal{U},R_mathcal{U}}$ by showing they are self-similar with respect to the substitution $phi$. This chapter provides a transversal reading of results divided into four different articles obtained through the study of the Jeandel-Rao Wang shift. It gathers in one place the methods introduced to desubstitute Wang shifts and to desubstitute codings of $mathbb{Z}^2$-actions by focussing on a simple 2-dimensional self-similar subshift. SageMath code to find marker tiles and compute the Rauzy induction of $mathbb{Z}^2$-rotations is provided allowing to reproduce the computations.
We define a Wang tile set $mathcal{U}$ of cardinality 19 and show that the set $Omega_mathcal{U}$ of all valid Wang tilings $mathbb{Z}^2tomathcal{U}$ is self-similar, aperiodic and is a minimal subshift of $mathcal{U}^{mathbb{Z}^2}$. Thus $mathcal{U}
In this paper we prove that if ${varphi_i(x)=lambda x+t_i}$ is an equicontractive iterated function system and $b$ is a positive integer satisfying $frac{log b}{log |lambda|} otinmathbb{Q},$ then almost every $x$ is normal in base $b$ for any non-atomic self-similar measure of ${varphi_i}$.
We construct a minimal dynamical system of mean dimension equal to $1$, which can be embedded in the shift action on the Hilbert cube $[0,1]^mathbb{Z}$. Our result clarifies a seemingly plausible impression and finally enables us to have a full under
For self-similar sets on $mathbb{R}$ satisfying the exponential separation condition we show that the natural projections of shift invariant ergodic measures is equal to $min{1,frac{h}{-chi}}$, where $h$ and $chi$ are the entropy and Lyapunov exponen
A recent result of Downarowicz and Serafin (DS) shows that there exist positive entropy subshifts satisfying the assertion of Sarnaks conjecture. More precisely, it is proved that if $y=(y_n)_{nge 1}$ is a bounded sequence with zero average along eve