ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially-Adaptive Pixelwise Networks for Fast Image Translation

98   0   0.0 ( 0 )
 نشر من قبل Tamar Rott Shaham
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new generator architecture, aimed at fast and efficient high-resolution image-to-image translation. We design the generator to be an extremely lightweight function of the full-resolution image. In fact, we use pixel-wise networks; that is, each pixel is processed independently of others, through a composition of simple affine transformations and nonlinearities. We take three important steps to equip such a seemingly simple function with adequate expressivity. First, the parameters of the pixel-wise networks are spatially varying so they can represent a broader function class than simple 1x1 convolutions. Second, these parameters are predicted by a fast convolutional network that processes an aggressively low-resolution representation of the input; Third, we augment the input image with a sinusoidal encoding of spatial coordinates, which provides an effective inductive bias for generating realistic novel high-frequency image content. As a result, our model is up to 18x faster than state-of-the-art baselines. We achieve this speedup while generating comparable visual quality across different image resolutions and translation domains.



قيم البحث

اقرأ أيضاً

We present a general learning-based solution for restoring images suffering from spatially-varying degradations. Prior approaches are typically degradation-specific and employ the same processing across different images and different pixels within. H owever, we hypothesize that such spatially rigid processing is suboptimal for simultaneously restoring the degraded pixels as well as reconstructing the clean regions of the image. To overcome this limitation, we propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts computation to difficult regions in the image. SPAIR comprises of two components, (1) a localization network that identifies degraded pixels, and (2) a restoration network that exploits knowledge from the localization network in filter and feature domain to selectively and adaptively restore degraded pixels. Our key idea is to exploit the non-uniformity of heavy degradations in spatial-domain and suitably embed this knowledge within distortion-guided modules performing sparse normalization, feature extraction and attention. Our architecture is agnostic to physical formation model and generalizes across several types of spatially-varying degradations. We demonstrate the efficacy of SPAIR individually on four restoration tasks-removal of rain-streaks, raindrops, shadows and motion blur. Extensive qualitative and quantitative comparisons with prior art on 11 benchmark datasets demonstrate that our degradation-agnostic network design offers significant performance gains over state-of-the-art degradation-specific architectures. Code available at https://github.com/human-analysis/spatially-adaptive-image-restoration.
We propose a method for lossy image compression based on recurrent, convolutional neural networks that outperforms BPG (4:2:0 ), WebP, JPEG2000, and JPEG as measured by MS-SSIM. We introduce three improvements over previous research that lead to this state-of-the-art result. First, we show that training with a pixel-wise loss weighted by SSIM increases reconstruction quality according to several metrics. Second, we modify the recurrent architecture to improve spatial diffusion, which allows the network to more effectively capture and propagate image information through the networks hidden state. Finally, in addition to lossless entropy coding, we use a spatially adaptive bit allocation algorithm to more efficiently use the limited number of bits to encode visually complex image regions. We evaluate our method on the Kodak and Tecnick image sets and compare against standard codecs as well recently published methods based on deep neural networks.
We propose a novel method for unsupervised image-to-image translation, which incorporates a new attention module and a new learnable normalization function in an end-to-end manner. The attention module guides our model to focus on more important regi ons distinguishing between source and target domains based on the attention map obtained by the auxiliary classifier. Unlike previous attention-based method which cannot handle the geometric changes between domains, our model can translate both images requiring holistic changes and images requiring large shape changes. Moreover, our new AdaLIN (Adaptive Layer-Instance Normalization) function helps our attention-guided model to flexibly control the amount of change in shape and texture by learned parameters depending on datasets. Experimental results show the superiority of the proposed method compared to the existing state-of-the-art models with a fixed network architecture and hyper-parameters. Our code and datasets are available at https://github.com/taki0112/UGATIT or https://github.com/znxlwm/UGATIT-pytorch.
Disentangling content and style information of an image has played an important role in recent success in image translation. In this setting, how to inject given style into an input image containing its own content is an important issue, but existing methods followed relatively simple approaches, leaving room for improvement especially when incorporating significant style changes. In response, we propose an advanced normalization technique based on adaptive convolution (AdaCoN), in order to properly impose style information into the content of an input image. In detail, after locally standardizing the content representation in a channel-wise manner, AdaCoN performs adaptive convolution where the convolution filter weights are dynamically estimated using the encoded style representation. The flexibility of AdaCoN can handle complicated image translation tasks involving significant style changes. Our qualitative and quantitative experiments demonstrate the superiority of our proposed method against various existing approaches that inject the style into the content.
144 - Yukai Shi , Jinghui Qin 2021
Deep convolutional networks have attracted great attention in image restoration and enhancement. Generally, restoration quality has been improved by building more and more convolutional block. However, these methods mostly learn a specific model to h andle all images and ignore difficulty diversity. In other words, an area in the image with high frequency tend to lose more information during compressing while an area with low frequency tends to lose less. In this article, we adrress the efficiency issue in image SR by incorporating a patch-wise rolling network(PRN) to content-adaptively recover images according to difficulty levels. In contrast to existing studies that ignore difficulty diversity, we adopt different stage of a neural network to perform image restoration. In addition, we propose a rolling strategy that utilizes the parameters of each stage more flexible. Extensive experiments demonstrate that our model not only shows a significant acceleration but also maintain state-of-the-art performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا