ﻻ يوجد ملخص باللغة العربية
We introduce a new generator architecture, aimed at fast and efficient high-resolution image-to-image translation. We design the generator to be an extremely lightweight function of the full-resolution image. In fact, we use pixel-wise networks; that is, each pixel is processed independently of others, through a composition of simple affine transformations and nonlinearities. We take three important steps to equip such a seemingly simple function with adequate expressivity. First, the parameters of the pixel-wise networks are spatially varying so they can represent a broader function class than simple 1x1 convolutions. Second, these parameters are predicted by a fast convolutional network that processes an aggressively low-resolution representation of the input; Third, we augment the input image with a sinusoidal encoding of spatial coordinates, which provides an effective inductive bias for generating realistic novel high-frequency image content. As a result, our model is up to 18x faster than state-of-the-art baselines. We achieve this speedup while generating comparable visual quality across different image resolutions and translation domains.
We present a general learning-based solution for restoring images suffering from spatially-varying degradations. Prior approaches are typically degradation-specific and employ the same processing across different images and different pixels within. H
We propose a method for lossy image compression based on recurrent, convolutional neural networks that outperforms BPG (4:2:0 ), WebP, JPEG2000, and JPEG as measured by MS-SSIM. We introduce three improvements over previous research that lead to this
We propose a novel method for unsupervised image-to-image translation, which incorporates a new attention module and a new learnable normalization function in an end-to-end manner. The attention module guides our model to focus on more important regi
Disentangling content and style information of an image has played an important role in recent success in image translation. In this setting, how to inject given style into an input image containing its own content is an important issue, but existing
Deep convolutional networks have attracted great attention in image restoration and enhancement. Generally, restoration quality has been improved by building more and more convolutional block. However, these methods mostly learn a specific model to h