ترغب بنشر مسار تعليمي؟ اضغط هنا

Content-adaptive Representation Learning for Fast Image Super-resolution

145   0   0.0 ( 0 )
 نشر من قبل Yukai Shi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep convolutional networks have attracted great attention in image restoration and enhancement. Generally, restoration quality has been improved by building more and more convolutional block. However, these methods mostly learn a specific model to handle all images and ignore difficulty diversity. In other words, an area in the image with high frequency tend to lose more information during compressing while an area with low frequency tends to lose less. In this article, we adrress the efficiency issue in image SR by incorporating a patch-wise rolling network(PRN) to content-adaptively recover images according to difficulty levels. In contrast to existing studies that ignore difficulty diversity, we adopt different stage of a neural network to perform image restoration. In addition, we propose a rolling strategy that utilizes the parameters of each stage more flexible. Extensive experiments demonstrate that our model not only shows a significant acceleration but also maintain state-of-the-art performance.



قيم البحث

اقرأ أيضاً

Image super-resolution (SR) research has witnessed impressive progress thanks to the advance of convolutional neural networks (CNNs) in recent years. However, most existing SR methods are non-blind and assume that degradation has a single fixed and k nown distribution (e.g., bicubic) which struggle while handling degradation in real-world data that usually follows a multi-modal, spatially variant, and unknown distribution. The recent blind SR studies address this issue via degradation estimation, but they do not generalize well to multi-source degradation and cannot handle spatially variant degradation. We design CRL-SR, a contrastive representation learning network that focuses on blind SR of images with multi-modal and spatially variant distributions. CRL-SR addresses the blind SR challenges from two perspectives. The first is contrastive decoupling encoding which introduces contrastive learning to extract resolution-invariant embedding and discard resolution-variant embedding under the guidance of a bidirectional contrastive loss. The second is contrastive feature refinement which generates lost or corrupted high-frequency details under the guidance of a conditional contrastive loss. Extensive experiments on synthetic datasets and real images show that the proposed CRL-SR can handle multi-modal and spatially variant degradation effectively under blind settings and it also outperforms state-of-the-art SR methods qualitatively and quantitatively.
Deep neural networks have achieved remarkable success in single image super-resolution (SISR). The computing and memory requirements of these methods have hindered their application to broad classes of real devices with limited computing power, howev er. One approach to this problem has been lightweight network architectures that bal- ance the super-resolution performance and the computation burden. In this study, we revisit this problem from an orthog- onal view, and propose a novel learning strategy to maxi- mize the pixel-wise fitting capacity of a given lightweight network architecture. Considering that the initial capacity of the lightweight network is very limited, we present an adaptive importance learning scheme for SISR that trains the network with an easy-to-complex paradigm by dynam- ically updating the importance of image pixels on the basis of the training loss. Specifically, we formulate the network training and the importance learning into a joint optimization problem. With a carefully designed importance penalty function, the importance of individual pixels can be gradu- ally increased through solving a convex optimization problem. The training process thus begins with pixels that are easy to reconstruct, and gradually proceeds to more complex pixels as fitting improves.
92 - Xin Li , Xin Jin , Tao Yu 2020
Traditional single image super-resolution (SISR) methods that focus on solving single and uniform degradation (i.e., bicubic down-sampling), typically suffer from poor performance when applied into real-world low-resolution (LR) images due to the com plicated realistic degradations. The key to solving this more challenging real image super-resolution (RealSR) problem lies in learning feature representations that are both informative and content-aware. In this paper, we propose an Omni-frequency Region-adaptive Network (ORNet) to address both challenges, here we call features of all low, middle and high frequencies omni-frequency features. Specifically, we start from the frequency perspective and design a Frequency Decomposition (FD) module to separate different frequency components to comprehensively compensate the information lost for real LR image. Then, considering the different regions of real LR image have different frequency information lost, we further design a Region-adaptive Frequency Aggregation (RFA) module by leveraging dynamic convolution and spatial attention to adaptively restore frequency components for different regions. The extensive experiments endorse the effective, and scenario-agnostic nature of our OR-Net for RealSR.
Most existing CNN-based super-resolution (SR) methods are developed based on an assumption that the degradation is fixed and known (e.g., bicubic downsampling). However, these methods suffer a severe performance drop when the real degradation is diff erent from their assumption. To handle various unknown degradations in real-world applications, previous methods rely on degradation estimation to reconstruct the SR image. Nevertheless, degradation estimation methods are usually time-consuming and may lead to SR failure due to large estimation errors. In this paper, we propose an unsupervised degradation representation learning scheme for blind SR without explicit degradation estimation. Specifically, we learn abstract representations to distinguish various degradations in the representation space rather than explicit estimation in the pixel space. Moreover, we introduce a Degradation-Aware SR (DASR) network with flexible adaption to various degradations based on the learned representations. It is demonstrated that our degradation representation learning scheme can extract discriminative representations to obtain accurate degradation information. Experiments on both synthetic and real images show that our network achieves state-of-the-art performance for the blind SR task. Code is available at: https://github.com/LongguangWang/DASR.
Stereo image pairs can be used to improve the performance of super-resolution (SR) since additional information is provided from a second viewpoint. However, it is challenging to incorporate this information for SR since disparities between stereo im ages vary significantly. In this paper, we propose a parallax-attention stereo superresolution network (PASSRnet) to integrate the information from a stereo image pair for SR. Specifically, we introduce a parallax-attention mechanism with a global receptive field along the epipolar line to handle different stereo images with large disparity variations. We also propose a new and the largest dataset for stereo image SR (namely, Flickr1024). Extensive experiments demonstrate that the parallax-attention mechanism can capture correspondence between stereo images to improve SR performance with a small computational and memory cost. Comparative results show that our PASSRnet achieves the state-of-the-art performance on the Middlebury, KITTI 2012 and KITTI 2015 datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا