ﻻ يوجد ملخص باللغة العربية
We present a classification based approach for the next best view selection and show how we can plausibly obtain a supervisory signal for this task. The proposed approach is end-to-end trainable and aims to get the best possible 3D reconstruction quality with a pair of passively acquired 2D views. The proposed model consists of two stages: a classifier and a reconstructor network trained jointly via the indirect 3D supervision from ground truth voxels. While testing, the proposed method assumes no prior knowledge of the underlying 3D shape for selecting the next best view. We demonstrate the proposed methods effectiveness via detailed experiments on synthetic and real images and show how it provides improved reconstruction quality than the existing state of the art 3D reconstruction and the next best view prediction techniques.
Humans can easily infer the underlying 3D geometry and texture of an object only from a single 2D image. Current computer vision methods can do this, too, but suffer from view generalization problems - the models inferred tend to make poor prediction
Learning-based 3D reconstruction methods have shown impressive results. However, most methods require 3D supervision which is often hard to obtain for real-world datasets. Recently, several works have proposed differentiable rendering techniques to t
Recently, huge strides were made in monocular and multi-view pose estimation with known camera parameters, whereas pose estimation from multiple cameras with unknown positions and orientations received much less attention. In this paper, we show how
3D multi-object tracking is an important component in robotic perception systems such as self-driving vehicles. Recent work follows a tracking-by-detection pipeline, which aims to match past tracklets with detections in the current frame. To avoid ma
In this paper, we focus on recognizing 3D shapes from arbitrary views, i.e., arbitrary numbers and positions of viewpoints. It is a challenging and realistic setting for view-based 3D shape recognition. We propose a canonical view representation to t