ﻻ يوجد ملخص باللغة العربية
The fluctuations in thermodynamic and transport properties in many-body systems gain importance as the number of constituent particles is reduced. Ultracold atomic gases provide a clean setting for the study of mesoscopic systems; however, the detection of temporal fluctuations is hindered by the typically destructive detection, precluding repeated precise measurements on the same sample. Here, we overcome this hindrance by utilizing the enhanced light--matter coupling in an optical cavity to perform a minimally invasive continuous measurement and track the time evolution of the atom number in a quasi two-dimensional atomic gas during evaporation from a tilted trapping potential. We demonstrate sufficient measurement precision to detect atom number fluctuations well below the level set by Poissonian statistics. Furthermore, we characterize the non-linearity of the evaporation process and the inherent fluctuations of the transport of atoms out of the trapping volume through two-time correlations of the atom number. Our results establish coupled atom--cavity systems as a novel testbed for observing thermodynamics and transport phenomena in mesosopic cold atomic gases and, generally, pave the way for measuring multi-time correlation functions of ultracold quantum gases.
We demonstrate experimentally the evaporative cooling of a few hundred rubidium 87 atoms in a single-beam microscopic dipole trap. Starting from 800 atoms at a temperature of 125microKelvins, we produce an unpolarized sample of 40 atoms at 110nK, wit
We report the realization of Bose-Einstein condensates of 39K atoms without the aid of an additional atomic coolant. Our route to Bose-Einstein condensation comprises Sub Doppler laser cooling of large atomic clouds with more than 10^10 atoms and eva
We discuss the dynamics of sympathetic cooling of atomic mixtures in realistic, nonlinear trapping potentials using a microscopic effective model developed earlier for harmonic traps. We contrast the effectiveness of different atomic traps, such as I
We demonstrate site-resolved imaging of individual bosonic $^{174}mathrm{Yb}$ atoms in a Hubbard-regime two-dimensional optical lattice with a short lattice constant of 266 nm. To suppress the heating by probe light with the $^1S_0$-$^1P_1$ transitio
We report on our recent progress in the manipulation and cooling of a magnetically guided, high flux beam of $^{87}{rm Rb}$ atoms. Typically $7times 10^9$ atoms per second propagate in a magnetic guide providing a transverse gradient of 800 G/cm, wit