ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaporative cooling of a small number of atoms in a single-beam microscopic dipole trap

161   0   0.0 ( 0 )
 نشر من قبل Yvan Sortais
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate experimentally the evaporative cooling of a few hundred rubidium 87 atoms in a single-beam microscopic dipole trap. Starting from 800 atoms at a temperature of 125microKelvins, we produce an unpolarized sample of 40 atoms at 110nK, within 3s. The phase-space density at the end of the evaporation reaches unity, close to quantum degeneracy. The gain in phase-space density after evaporation is 10^3. We find that the scaling laws used for much larger numbers of atoms are still valid despite the small number of atoms involved in the evaporative cooling process. We also compare our results to a simple kinetic model describing the evaporation process and find good agreement with the data.



قيم البحث

اقرأ أيضاً

We report the realization of Bose-Einstein condensates of 39K atoms without the aid of an additional atomic coolant. Our route to Bose-Einstein condensation comprises Sub Doppler laser cooling of large atomic clouds with more than 10^10 atoms and eva porative cooling in optical dipole traps where the collisional cross section can be increased using magnetic Feshbach resonances. Large condensates with almost 10^6 atoms can be produced in less than 15 seconds. Our achievements eliminate the need for sympathetic cooling with Rb atoms which was the usual route implemented till date due to the unfavourable collisional property of 39K. Our findings simplify the experimental set-up for producing Bose-Einstein condensates of 39K atoms with tunable interactions, which have a wide variety of promising applications including atom-interferometry to studies on the interplay of disorder and interactions in quantum gases.
We demonstrate a simple scheme to reach Bose-Einstein condensation (BEC) of metastable triplet helium atoms using a single beam optical dipole trap with moderate power of less than 3 W. Our scheme is based on RF-induced evaporative cooling in a quadr upole magnetic trap and transfer to a single beam optical dipole trap that is located below the magnetic trap center. We transfer 1x10^6 atoms into the optical dipole trap, with an initial temperature of 14 mu K, and observe efficient forced evaporative cooling both in a hybrid trap, in which the quadrupole magnetic trap operates just below the levitation gradient, and in the pure optical dipole trap, reaching the onset of BEC with 2x10^5 atoms and a pure BEC of 5x10^4 atoms. Our work shows that a single beam hybrid trap can be applied for a light atom, for which evaporative cooling in the quadrupole magnetic trap is strongly limited by Majorana spin-flips, and the very small levitation gradient limits the axial confinement in the hybrid trap.
The fluctuations in thermodynamic and transport properties in many-body systems gain importance as the number of constituent particles is reduced. Ultracold atomic gases provide a clean setting for the study of mesoscopic systems; however, the detect ion of temporal fluctuations is hindered by the typically destructive detection, precluding repeated precise measurements on the same sample. Here, we overcome this hindrance by utilizing the enhanced light--matter coupling in an optical cavity to perform a minimally invasive continuous measurement and track the time evolution of the atom number in a quasi two-dimensional atomic gas during evaporation from a tilted trapping potential. We demonstrate sufficient measurement precision to detect atom number fluctuations well below the level set by Poissonian statistics. Furthermore, we characterize the non-linearity of the evaporation process and the inherent fluctuations of the transport of atoms out of the trapping volume through two-time correlations of the atom number. Our results establish coupled atom--cavity systems as a novel testbed for observing thermodynamics and transport phenomena in mesosopic cold atomic gases and, generally, pave the way for measuring multi-time correlation functions of ultracold quantum gases.
We demonstrate continuous Sisyphus cooling combined with a continuous loading mechanism used to efficiently slow down and accumulate atoms from a guided beam. While the loading itself is based on a single slowing step, applying a radio frequency fiel d forces the atoms to repeat this step many times resulting in a so-called Sisyphus cooling. This extension allows efficient loading and cooling of atoms from a wide range of initial beam conditions. We study the interplay of the continuous loading and simultaneous Sisyphus cooling in different density regimes. In the case of a low density flux we observe a relative gain in phase-space density of nine orders of magnitude. This makes the presented scheme an ideal tool for reaching collisional densities enabling evaporative cooling - in spite of unfavourable initial conditions.
We characterize the anisotropic differential ac-Stark shift for the Dy $626$ nm intercombination transition, induced in a far-detuned $1070$ nm optical dipole trap, and observe the existence of a magic polarization for which the polarizabilities of t he ground and excited states are equal. From our measurements we extract both the scalar and tensorial components of the dynamic dipole polarizability for the excited state, $alpha_E^text{s} = 188 (12),alpha_text{0}$ and $alpha_E^text{t} = 34 (12),alpha_text{0}$, respectively, where $alpha_text{0}$ is the atomic unit for the electric polarizability. We also provide a theoretical model allowing us to predict the excited state polarizability and find qualitative agreement with our observations. Furthermore, we utilize our findings to optimize the efficiency of Doppler cooling of a trapped gas, by controlling the sign and magnitude of the inhomogeneous broadening of the optical transition. The resulting initial gain of the collisional rate allows us, after forced evaporation cooling, to produce a quasi-pure Bose-Einstein condensate of $^{162}$Dy with $3times 10^4$ atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا