ﻻ يوجد ملخص باللغة العربية
Recent experiments (G. Ariel, et al., Nature Comm. 6, 8396 (2015)) revealed an intriguing behavior of swarming bacteria: they fundamentally change their collective motion from simple diffusion into a superdiffusive L{e}vy walk dynamics. We introduce a nonlinear non-Markovian persistent random walk model that explains the emergence of superdiffusive L{e}vy walks. We show that the alignment interaction between individuals can lead to the superdiffusive growth of the mean squared displacement and the power law distribution of run length with infinite variance. The main result is that the superdiffusive behavior emerges as a nonlinear collective phenomenon, rather than due to the standard assumption of the power law distribution of run distances from the inception. At the same time, we find that the repulsion/collision effects lead to the density dependent exponential tempering of power law distributions. This qualitatively explains experimentally observed transition from superdiffusion to the diffusion of mussels as their density increases (M. de Jager et al., Proc. R. Soc. B 281, 20132605 (2014)).
Intermittent stochastic processes appear in a wide field, such as chemistry, biology, ecology, and computer science. This paper builds up the theory of intermittent continuous time random walk (CTRW) and L{e}vy walk, in which the particles are stocha
Levy walk process is one of the most effective models to describe superdiffusion, which underlies some important movement patterns and has been widely observed in the micro and macro dynamics. From the perspective of random walk theory, here we inves
The transport of self-propelled particle confined in corrugated channel with L{e}vy noise is investigated. The parameters of L{e}vy noise(i.e., the stability index, the asymmetry parameter, the scale parameter, the location parameter) and the paramet
L{e}vy walk is a popular and more `physical model to describe the phenomena of superdiffusion, because of its finite velocity. The movements of particles are under the influences of external potentials almost at anytime and anywhere. In this paper, w
Motivated by the emph{L{e}vy foraging hypothesis} -- the premise that various animal species have adapted to follow emph{L{e}vy walks} to optimize their search efficiency -- we study the parallel hitting time of L{e}vy walks on the infinite two-dimen