ﻻ يوجد ملخص باللغة العربية
We prove an almost constant lower bound of the isoperimetric coefficient in the KLS conjecture. The lower bound has the dimension dependency $d^{-o_d(1)}$. When the dimension is large enough, our lower bound is tighter than the previous best bound which has the dimension dependency $d^{-1/4}$. Improving the current best lower bound of the isoperimetric coefficient in the KLS conjecture has many implications, including improvements of the current best bounds in Bourgains slicing conjecture and in the thin-shell conjecture, better concentration inequalities for Lipschitz functions of log-concave measures and better mixing time bounds for MCMC sampling algorithms on log-concave measures.
In this paper we study regularity and topological properties of volume constrained minimizers of quasi-perimeters in $sf RCD$ spaces where the reference measure is the Hausdorff measure. A quasi-perimeter is a functional given by the sum of the usual
Firstly, we derive in dimension one a new covariance inequality of $L_{1}-L_{infty}$ type that characterizes the isoperimetric constant as the best constant achieving the inequality. Secondly, we generalize our result to $L_{p}-L_{q}$ bounds for the
In this paper we provide new existence results for isoperimetric sets of large volume in Riemannian manifolds with nonnegative Ricci curvature and Euclidean volume growth. We find sufficient conditions for their existence in terms of the geometry at
Answering a key point left open in a recent work of Bongers, Guo, Li and Wick, we provide the following lower bound $$ |b|_{text{BMO}_{gamma}(mathbb{R}^2)}lesssim |[b,H_{gamma}]|_{L^p(mathbb{R}^2)to L^p(mathbb{R}^2)}, $$ where $H_{gamma}$ is the parabolic Hilbert transform.
We consider the Stavskayas process, which is a two-states Probabilistic Celular Automata defined on a one-dimensional lattice. The process is defined in such a way that the state of any vertex depends only on itself and on the state of its right-adja