ﻻ يوجد ملخص باللغة العربية
Firstly, we derive in dimension one a new covariance inequality of $L_{1}-L_{infty}$ type that characterizes the isoperimetric constant as the best constant achieving the inequality. Secondly, we generalize our result to $L_{p}-L_{q}$ bounds for the covariance. Consequently, we recover Cheegers inequality without using the co-area formula. We also prove a generalized weighted Hardy type inequality that is needed to derive our covariance inequalities and that is of independent interest. Finally, we explore some consequences of our covariance inequalities for $L_{p}$-Poincar{e} inequalities and moment bounds. In particular, we obtain optimal constants in general $L_{p}$-Poincar{e} inequalities for measures with finite isoperimetric constant, thus generalizing in dimension one Cheegers inequality, which is a $L_{p}$-Poincar{e} inequality for $p=2$, to any real $pgeq 1$.
The goal of this paper is to push forward the study of those properties of log-concave measures that help to estimate their Poincar{e} constant. First we revisit E. Milmans result [40] on the link between weak (Poincar{e} or concentration) inequaliti
We prove that if ${(P_x)}_{xin mathscr X}$ is a family of probability measures which satisfy the log-Sobolev inequality and whose pairwise chi-squared divergences are uniformly bounded, and $mu$ is any mixing distribution on $mathscr X$, then the mix
In this paper we establish some explicit and sharp estimates of the spectral gap and the log-Sobolev constant for mean field particles system, uniform in the number of particles, when the confinement potential have many local minimums. Our uniform lo
We introduce the notion of an interpolating path on the set of probability measures on finite graphs. Using this notion, we first prove a displacement convexity property of entropy along such a path and derive Prekopa-Leindler type inequalities, a Ta
If Poincar{e} inequality has been studied by Bobkov for radial measures, few is known about the logarithmic Sobolev inequalty in the radial case. We try to fill this gap here using different methods: Bobkovs argument and super-Poincar{e} inequalities