ﻻ يوجد ملخص باللغة العربية
The interference pattern in electron double-slit diffraction is a hallmark of quantum mechanics. A long standing question for stochastic electrodynamics (SED) is whether or not it is capable of reproducing such effects, as interference is a manifestation of quantum coherence. In this study, we use excited harmonic oscillators to directly test this quantum feature in SED. We use two counter-propagating dichromatic laser pulses to promote a ground-state harmonic oscillator to a squeezed Schr{o}dinger cat state. Upon recombination of the two well-separated wavepackets, an interference pattern emerges in the quantum probability distribution but is absent in the SED probability distribution. We thus give a counterexample that rejects SED as a valid alternative to quantum mechanics.
Modeling the Schr{o}dinger cat by a two state system and assuming that the cat is coupled to the environment we look for the least paradoxical states of the Schr{o}dinger cat in the following way. We require the reduced density matrix of the cat for
Employing the time-dependent variational principle combined with the multiple Davydov $mathrm{D}_2$ Ansatz, we investigate Landau-Zener (LZ) transitions in a qubit coupled to a photon mode with various initial photon states at zero temperature. Thank
Magnon cat state represents a macroscopic quantum superposition of collective magnetic excitations of large number spins that not only provides fundamental tests of macroscopic quantum effects but also finds applications in quantum metrology and quan
Optical cat state plays an essential role in quantum computation and quantum metrology. Here, we experimentally quantify quantum coherence of an optical cat state by means of relative entropy and l_1 norm of coherence in Fock basis based on the prepa
Principal component analysis (PCA) has achieved great success in unsupervised learning by identifying covariance correlations among features. If the data collection fails to capture the covariance information, PCA will not be able to discover meaning