ﻻ يوجد ملخص باللغة العربية
Modeling the Schr{o}dinger cat by a two state system and assuming that the cat is coupled to the environment we look for the least paradoxical states of the Schr{o}dinger cat in the following way. We require the reduced density matrix of the cat for one of the two states in the superposition to be the same as the one for the total state while distinct from the reduced density matrix of the cat for the other state in the superposition. We then look for the reduced density matrices for which the cat is as alive as possible for the first state (and as dead as possible for the second state). The resulting states are those in which the probability for the cat to be alive (or dead) is $1/2+sqrt 2/4approx 0.854$
The interference pattern in electron double-slit diffraction is a hallmark of quantum mechanics. A long standing question for stochastic electrodynamics (SED) is whether or not it is capable of reproducing such effects, as interference is a manifesta
Magnon cat state represents a macroscopic quantum superposition of collective magnetic excitations of large number spins that not only provides fundamental tests of macroscopic quantum effects but also finds applications in quantum metrology and quan
Employing the time-dependent variational principle combined with the multiple Davydov $mathrm{D}_2$ Ansatz, we investigate Landau-Zener (LZ) transitions in a qubit coupled to a photon mode with various initial photon states at zero temperature. Thank
Principal component analysis (PCA) has achieved great success in unsupervised learning by identifying covariance correlations among features. If the data collection fails to capture the covariance information, PCA will not be able to discover meaning
We study the effects of continuous measurement of the field mode during the collapse and revival of spin Schr{o}dinger cat states in the Tavis-Cummings model of N qubits (two-level quantum systems) coupled to a field mode. We show that a compromise b