ﻻ يوجد ملخص باللغة العربية
High statistics results for the isovector momentum fraction, $langle x rangle_{u-d}$, helicity moment, $langle x rangle_{Delta u-Delta d}$, and the transversity moment, $langle xrangle_{delta u-delta d}$, of the nucleon are presented using seven ensembles of gauge configurations generated by the JLab/W&M/LANL/MIT collaborations using $2+1$-flavors of dynamical Wilson-clover quarks. Attention is given to understanding and controlling the contributions of excited states. The final results are obtained using a simultaneous fit in the lattice spacing $a$, pion mass $M_pi$ and the finite volume parameter $M_pi L$ keeping leading order corrections. The data show no significant dependence on the lattice spacing and some evidence for finite-volume corrections. The main variation is with $M_pi$, whose magnitude depends on the mass gap of the first excited state used in the analysis. Our final results, in the $overline{rm MS}$ scheme at 2 GeV, are $langle x rangle_{u-d} = 0.160(16)(20)$, $langle x rangle_{Delta u-Delta d} = 0.192(13)(20)$ and $langle x rangle_{delta u-delta d} = 0.215(17)(20)$, where the first error is the overall analysis uncertainty assuming excited-state contributions have been removed, and the second is an additional systematic uncertainty due to possible residual excited-state contributions. These results are consistent with other recent lattice calculations and phenomenological global fit values.
We present results on the quark unpolarized, helicity and transversity parton distributions functions of the nucleon. We use the quasi-parton distribution approach within the lattice QCD framework and perform the computation using an ensemble of twis
We present an update on our results of nucleon form factors measured on a large-volume lattice $(8.1rm{fm})^4$ at almost the physical point in 2+1 flavor QCD. The configurations are generated with the stout-smeared $mathcal{O}(a)$ improved Wilson qua
We present results on the axial, scalar and tensor isovector-couplings of the nucleon from 2+1 flavor lattice QCD with physical light quarks ($m_pi$ = 135 MeV) in large spatial volume of (10.8 fm)$^3$. The calculations are carried out with the PACS10
Nucleon-structure calculations of isovector vector- and axialvector-current form factors, transversity and scalar charge, and quark momentum and helicity fractions are reported from two recent 2+1-flavor dynamical domain-wall fermions lattice-QCD ens
We present high-statistics results for the isovector and flavor diagonal charges of the proton using 11 ensembles of 2+1+1 flavor HISQ fermions. In the isospin symmetric limit, results for the neutron are given by the $u leftrightarrow d$ interchange