ﻻ يوجد ملخص باللغة العربية
We present results on the axial, scalar and tensor isovector-couplings of the nucleon from 2+1 flavor lattice QCD with physical light quarks ($m_pi$ = 135 MeV) in large spatial volume of (10.8 fm)$^3$. The calculations are carried out with the PACS10 gauge configurations generated by the PACS Collaboration with the stout-smeared $mathcal{O}(a)$ improved Wilson fermions and Iwasaki gauge action at $beta=1.82$ corresponding to the lattice spacing of 0.084 fm. For the renormalization, we use the RI/SMOM scheme, a variant of Rome-Southampton RI/MOM scheme with reduced systematic errors, as the intermediate scheme. We then evaluate our final results in the $overline{rm MS}$ scheme at a scale of 2 GeV, using the continuum perturbation theory for the matching scale of RI/SMOM and $overline{rm MS}$ schemes and running.
We compute the axial, scalar, tensor and pseudoscalar isovector couplings of the nucleon as well as the induced tensor and pseudoscalar charges in lattice simulations with $N_f=2$ mass-degenerate non-perturbatively improved Wilson-Sheikholeslami-Wohl
We present an update on our results of nucleon form factors measured on a large-volume lattice $(8.1rm{fm})^4$ at almost the physical point in 2+1 flavor QCD. The configurations are generated with the stout-smeared $mathcal{O}(a)$ improved Wilson qua
We report nucleon mass, isovector vector and axial-vector charges, and tensor and scalar couplings, calculated using two recent 2+1-flavor dynamical domain-wall fermions lattice-QCD ensembles generated jointly by the RIKEN-BNL-Columbia and UKQCD coll
The current status of the LHP and RBC joint calculations of the nucleon isovector form factors and low moments of structure functions with a 2+1-flavor dynamical domain-wall fermion (DWF) lattice-QCD ensemble at the physical pion mass generated by RB
We present high-statistics results for the isovector and flavor diagonal charges of the proton using 11 ensembles of 2+1+1 flavor HISQ fermions. In the isospin symmetric limit, results for the neutron are given by the $u leftrightarrow d$ interchange