ﻻ يوجد ملخص باللغة العربية
Antiferromagnetic thin films typically exhibit a multi-domain state, and control of the antiferromagnetic Neel vector is challenging as antiferromagnetic materials are robust to magnetic perturbations. By relying on anisotropic in-plane strain engineering of epitaxial thin films of the prototypical antiferromagnetic material LaFeO3, uniaxial Neel vector control is demonstrated. Orthorhombic (011)- and (101)-oriented DyScO3, GdScO3 and NdGaO3 substrates are used to engineer different anisotropic in-plane strain states. The anisotropic in-plane strain stabilises structurally monodomain monoclinic LaFeO3 thin films. The uniaxial Neel vector is found along the tensile strained b axis, contrary to bulk LaFeO3 having the Neel vector along the shorter a axis, and no magnetic domains are found. Hence, anisotropic strain engineering is a viable tool for designing unique functional responses, further enabling antiferromagnetic materials for mesoscopic device technology.
Combining multiple degrees of freedom in strongly-correlated materials such as transition-metal oxides would lead to fascinating magnetic and magnetocaloric features. Herein, the strain effects are used to markedly tailor the magnetic and magnetocalo
Transition-metal oxides with an ABO$_3$ perovskite structure exhibit strongly entangled structural and electronic degrees of freedom and thus, one expects to unveil exotic phases and properties by acting on the lattice through various external stimul
Understanding the electrical manipulation of antiferromagnetic order is a crucial aspect to enable the design of antiferromagnetic devices working at THz frequency. Focusing on collinear insulating antiferromagnetic NiO/Pt thin films as a materials p
Inversion symmetry breaking is a ubiquitous concept in condensed-matter science. On the one hand, it is a prerequisite for many technologically relevant effects such as piezoelectricity, photovoltaic and nonlinear optical properties and spin-transpor
Understanding of the metal-insulator transition (MIT) in correlated transition-metal oxides is a fascinating topic in condensed matter physics and a precise control of such transitions plays a key role in developing novel electronic devices. Here we