ﻻ يوجد ملخص باللغة العربية
Energy minimizers to a MEMS model with an insulating layer are shown to converge in its reinforced limit to the minimizer of the limiting model as the thickness of the layer tends to zero. The proof relies on the identification of the $Gamma$-limit of the energy in this limit.
The repulsion strength at the origin for repulsive/attractive potentials determines the regularity of local minimizers of the interaction energy. In this paper, we show that if this repulsion is like Newtonian or more singular than Newtonian (but sti
We establish sufficient conditions for a function on the torus to be equal to its Steiner symmetrization and apply the result to volume-constrained minimizers of the Cahn-Hilliard energy. We also show how two-point rearrangements can be used to estab
We consider a variant of Gamows liquid drop model with an anisotropic surface energy. Under suitable regularity and ellipticity assumptions on the surface tension, Wulff shapes are minimizers in this problem if and only if the surface energy is isotr
We study the regularity of minimizers of the functional $mathcal E(u):= [u]_{H^s(Omega)}^2 +int_Omega fu$. This corresponds to understanding solutions for the regional fractional Laplacian in $Omegasubsetmathbb R^N$. More precisely, we are interested
A semilinear parabolic equation with constraint modeling the dynamics of a microelectromechanical system (MEMS) is studied. In contrast to the commonly used MEMS model, the well-known pull-in phenomenon occurring above a critical potential threshold