ﻻ يوجد ملخص باللغة العربية
We study the regularity of minimizers of the functional $mathcal E(u):= [u]_{H^s(Omega)}^2 +int_Omega fu$. This corresponds to understanding solutions for the regional fractional Laplacian in $Omegasubsetmathbb R^N$. More precisely, we are interested on the global (up to the boundary) regularity of solutions, both in the case of free minimizers in $H^s(Omega)$ (i.e., Neumann problem), or in the case of Dirichlet condition $uin H^s_0(Omega)$ when $s>frac12$. Our main result establishes the sharp regularity of solutions in both cases: $uin C^{2s+alpha}(overlineOmega)$ in the Neumann case, and $u/delta^{2s-1}in C^{1+alpha}(overlineOmega)$ in the Dirichlet case. Here, $delta$ is the distance to $partialOmega$, and $alpha<alpha_s$, with $alpha_sin (0,1-s)$ and $2s+alpha_s>1$. We also show the optimality of our result: these estimates fail for $alpha>alpha_s$, even when $f$ and $partialOmega$ are $C^infty$.
Given a global 1-homogeneous minimizer $U_0$ to the Alt-Caffarelli energy functional, with $sing(F(U_0)) = {0}$, we provide a foliation of the half-space $R^{n} times [0,+infty)$ with dilations of graphs of global minimizers $underline U leq U_0 leq
The variational problem for the functional $F=frac12|phi^*omega|_{L^2}^2$ is considered, where $phi:(M,g)to (N,omega)$ maps a Riemannian manifold to a symplectic manifold. This functional arises in theoretical physics as the strong coupling limit of
The repulsion strength at the origin for repulsive/attractive potentials determines the regularity of local minimizers of the interaction energy. In this paper, we show that if this repulsion is like Newtonian or more singular than Newtonian (but sti
We establish sufficient conditions for a function on the torus to be equal to its Steiner symmetrization and apply the result to volume-constrained minimizers of the Cahn-Hilliard energy. We also show how two-point rearrangements can be used to estab
Energy minimizers to a MEMS model with an insulating layer are shown to converge in its reinforced limit to the minimizer of the limiting model as the thickness of the layer tends to zero. The proof relies on the identification of the $Gamma$-limit of the energy in this limit.