ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of two Einstein crosses from massive post--blue nugget galaxies at z>1 in KiDS

148   0   0.0 ( 0 )
 نشر من قبل Rui Li
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of two Einstein Crosses (ECs) in the footprint of the Kilo-Degree Survey (KiDS): KIDS J232940-340922 and KIDS J122456+005048. Using integral field spectroscopy from MUSE@VLT, we confirm their gravitational-lens nature. In both cases, the four spectra of the source clearly show a prominence of absorption features, hence revealing an evolved stellar population with little star formation. The lensing model of the two systems, assuming a singular isothermal ellipsoid (SIE) with external shear, shows that: 1) the two crosses, located at redshift $z=0.38$ and 0.24, have Einstein radius $R_{rm E}=5.2$ kpc and 5.4 kpc, respectively; 2) their projected dark matter fractions inside the half effective radius are 0.60 and 0.56 (Chabrier IMF); 3) the sources are ultra-compact galaxies, $R_{rm e}sim0.9$ kpc (at redshift $z_{rm s}=1.59$) and $R_{rm e}sim0.5$ kpc ($z_{rm s}=1.10$), respectively. These results are unaffected by the underlying mass density assumption. Due to size, blue color and absorption-dominated spectra, corroborated by low specific star-formation rates derived from optical-NIR spectral energy distribution fitting, we argue that the two lensed sources in these ECs are blue nuggets migrating toward their quenching phase.



قيم البحث

اقرأ أيضاً

142 - David T. Maltby 2019
We investigate the prevalence of galactic-scale outflows in post-starburst (PSB) galaxies at high redshift ($1 < z < 1.4$), using the deep optical spectra available in the UKIDSS Ultra Deep Survey (UDS). We use a sample of $sim40$ spectroscopically c onfirmed PSBs, recently identified in the UDS field, and perform a stacking analysis in order to analyse the structure of strong interstellar absorption features such as Mg ii ($lambda2800$ Ang.). We find that for massive ($M_* > 10^{10}rm,M_{odot}$) PSBs at $z > 1$, there is clear evidence for a strong blue-shifted component to the Mg ii absorption feature, indicative of high-velocity outflows ($v_{rm out}sim1150pm160rm,km,s^{-1}$) in the interstellar medium. We conclude that such outflows are typical in massive PSBs at this epoch, and potentially represent the residual signature of a feedback process that quenched these galaxies. Using full spectral fitting, we also obtain a typical stellar velocity dispersion $sigma_*$ for these PSBs of $sim200rm,km,s^{-1}$, which confirms they are intrinsically massive in nature (dynamical mass $M_{rm d}sim10^{11}rm,M_{odot}$). Given that these high-$z$ PSBs are also exceptionally compact ($r_{rm e}sim1$--$2rm,kpc$) and spheroidal (Sersic index $nsim3$), we propose that the outflowing winds may have been launched during a recent compaction event (e.g. major merger or disc collapse) that triggered either a centralised starburst or active galactic nuclei (AGN) activity. Finally, we find no evidence for AGN signatures in the optical spectra of these PSBs, suggesting they were either quenched by stellar feedback from the starburst itself, or that if AGN feedback is responsible, the AGN episode that triggered quenching does not linger into the post-starburst phase.
We use machine learning to identify in color images of high-redshift galaxies an astrophysical phenomenon predicted by cosmological simulations. This phenomenon, called the blue nugget (BN) phase, is the compact star-forming phase in the central regi ons of many growing galaxies that follows an earlier phase of gas compaction and is followed by a central quenching phase. We train a Convolutional Neural Network (CNN) with mock observed images of simulated galaxies at three phases of evolution: pre-BN, BN and post-BN, and demonstrate that the CNN successfully retrieves the three phases in other simulated galaxies. We show that BNs are identified by the CNN within a time window of $sim0.15$ Hubble times. When the trained CNN is applied to observed galaxies from the CANDELS survey at $z=1-3$, it successfully identifies galaxies at the three phases. We find that the observed BNs are preferentially found in galaxies at a characteristic stellar mass range, $10^{9.2-10.3} M_odot$ at all redshifts. This is consistent with the characteristic galaxy mass for BNs as detected in the simulations, and is meaningful because it is revealed in the observations when the direct information concerning the total galaxy luminosity has been eliminated from the training set. This technique can be applied to the classification of other astrophysical phenomena for improved comparison of theory and observations in the era of large imaging surveys and cosmological simulations.
We want to investigate whether we can use Lyalpha emission to obtain information on the environment properties and whether Lyalpha emitters show different characteristics as a function of their environment. We estimated local densities in the VANDELS Chandra Deep Field-South (CDFS) and UKIDSS Ultra Deep Survey (UDS) fields, by using a three-dimensional algorithm which works in the RA-dec-redshift space. We selected a sample of 131 Lyalpha-emitting galaxies (EW(Lyalpha)>0 A), unbiased with respect to environmental density, to study their location with respect to the over- or under-dense environment. We identify 13 (proto)cluster candidates in the CDFS and nine in the UDS at 2<z<4, based on photometric and spectroscopic redshifts from VANDELS and from all the available literature. No significant difference is observed in the rest-frame U-V color between field and galaxies located within the identified overdensities. We find that VANDELS Lyalpha emitters (LAEVs) lie preferentially outside of overdense regions as the majority of the galaxies with spectroscopic redshifts from VANDELS. The LAEVs in overdense regions tend to have low Lyalpha equivalent widths and low specific SFRs, and they also tend to be more massive than the LAEVs in the field. Their stacked Lyalpha profile shows a dominant red peak and a hint of a blue peak. Our results show that LAEVs are likely to be influenced by the environment and favour a scenario with outflows of low expansion velocities and high HI column densities for galaxies in overdense regions. An outflow with low expansion velocity could be related to the way galaxies are forming stars in overdense regions; the high HI column density can be a consequence of the gravitational potential of the overdensity. Therefore, Lyalpha-emitting galaxies can provide useful insights on the environment in which they reside.
We present the star formation histories of 39 galaxies with high quality rest-frame optical spectra at 0.5<z<1.3 selected to have strong Balmer absorption lines and/or Balmer break, and compare to a sample of spectroscopically selected quiescent gala xies at the same redshift. Photometric selection identifies a majority of objects that have clear evidence for a recent short-lived burst of star formation within the last 1.5 Gyr, i.e. post-starburst galaxies, however we show that good quality continuum spectra are required to obtain physical parameters such as burst mass fraction and burst age. Dust attenuation appears to be the primary cause for misidentification of post-starburst galaxies, leading to contamination in spectroscopic samples where only the [OII] emission line is available, as well as a small fraction of objects lost from photometric samples. The 31 confirmed post-starburst galaxies have formed 40-90% of their stellar mass in the last 1-1.5 Gyr. We use the derived star formation histories to find that the post-starburst galaxies are visible photometrically for 0.5-1 Gyr. This allows us to update a previous analysis to suggest that 25-50% of the growth of the red sequence at z~1 could be caused by a starburst followed by rapid quenching. We use the inferred maximum historical star formation rates of several 100-1000 Msun/yr and updated visibility times to confirm that sub-mm galaxies are likely progenitors of post-starburst galaxies. The short quenching timescales of 100-200 Myr are consistent with cosmological hydrodynamic models in which rapid quenching is caused by the mechanical expulsion of gas due to an AGN.
Post-starburst galaxies can be identified via the presence of prominent Hydrogen Balmer absorption lines in their spectra. We present a comprehensive study of the origin of strong Balmer lines in a volume-limited sample of 189 galaxies with $0.01<z<0 .05$, $log(mbox{M}_{star}/mbox{M}_{odot})>9.5$ and projected axis ratio $b/a>0.32$. We explore their structural properties, environments, emission lines and star formation histories, and compare them to control samples of star-forming and quiescent galaxies, and simulated galaxy mergers. Excluding contaminants, in which the strong Balmer lines are most likely caused by dust-star geometry, we find evidence for three different pathways through the post-starburst phase, with most events occurring in intermediate-density environments: (1) a significant disruptive event, such as a gas-rich major merger, causing a starburst and growth of a spheroidal component, followed by quenching of the star formation (70% of post-starburst galaxies at $9.5<log(mbox{M}_{star}/mbox{M}_{odot})<10.5$ and 60% at $log(mbox{M}_{star}/mbox{M}_{odot})>10.5$); (2) at $9.5<log(mbox{M}_{star}/mbox{M}_{odot})<10.5$, stochastic star formation in blue-sequence galaxies, causing a weak burst and subsequent return to the blue sequence (30%); (3) at $log(mbox{M}_{star}/mbox{M}_{odot})>10.5$, cyclic evolution of quiescent galaxies which gradually move towards the high-mass end of the red sequence through weak starbursts, possibly as a result of a merger with a smaller gas-rich companion (40%). Our analysis suggests that AGN are `on for $50%$ of the duration of the post-starburst phase, meaning that traditional samples of post-starburst galaxies with strict emission line cuts will be at least $50%$ incomplete due to the exclusion of narrow-line AGN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا