ترغب بنشر مسار تعليمي؟ اضغط هنا

High-velocity outflows in massive post-starburst galaxies at z > 1

143   0   0.0 ( 0 )
 نشر من قبل David Maltby Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David T. Maltby




اسأل ChatGPT حول البحث

We investigate the prevalence of galactic-scale outflows in post-starburst (PSB) galaxies at high redshift ($1 < z < 1.4$), using the deep optical spectra available in the UKIDSS Ultra Deep Survey (UDS). We use a sample of $sim40$ spectroscopically confirmed PSBs, recently identified in the UDS field, and perform a stacking analysis in order to analyse the structure of strong interstellar absorption features such as Mg ii ($lambda2800$ Ang.). We find that for massive ($M_* > 10^{10}rm,M_{odot}$) PSBs at $z > 1$, there is clear evidence for a strong blue-shifted component to the Mg ii absorption feature, indicative of high-velocity outflows ($v_{rm out}sim1150pm160rm,km,s^{-1}$) in the interstellar medium. We conclude that such outflows are typical in massive PSBs at this epoch, and potentially represent the residual signature of a feedback process that quenched these galaxies. Using full spectral fitting, we also obtain a typical stellar velocity dispersion $sigma_*$ for these PSBs of $sim200rm,km,s^{-1}$, which confirms they are intrinsically massive in nature (dynamical mass $M_{rm d}sim10^{11}rm,M_{odot}$). Given that these high-$z$ PSBs are also exceptionally compact ($r_{rm e}sim1$--$2rm,kpc$) and spheroidal (Sersic index $nsim3$), we propose that the outflowing winds may have been launched during a recent compaction event (e.g. major merger or disc collapse) that triggered either a centralised starburst or active galactic nuclei (AGN) activity. Finally, we find no evidence for AGN signatures in the optical spectra of these PSBs, suggesting they were either quenched by stellar feedback from the starburst itself, or that if AGN feedback is responsible, the AGN episode that triggered quenching does not linger into the post-starburst phase.



قيم البحث

اقرأ أيضاً

Post-starburst galaxies can be identified via the presence of prominent Hydrogen Balmer absorption lines in their spectra. We present a comprehensive study of the origin of strong Balmer lines in a volume-limited sample of 189 galaxies with $0.01<z<0 .05$, $log(mbox{M}_{star}/mbox{M}_{odot})>9.5$ and projected axis ratio $b/a>0.32$. We explore their structural properties, environments, emission lines and star formation histories, and compare them to control samples of star-forming and quiescent galaxies, and simulated galaxy mergers. Excluding contaminants, in which the strong Balmer lines are most likely caused by dust-star geometry, we find evidence for three different pathways through the post-starburst phase, with most events occurring in intermediate-density environments: (1) a significant disruptive event, such as a gas-rich major merger, causing a starburst and growth of a spheroidal component, followed by quenching of the star formation (70% of post-starburst galaxies at $9.5<log(mbox{M}_{star}/mbox{M}_{odot})<10.5$ and 60% at $log(mbox{M}_{star}/mbox{M}_{odot})>10.5$); (2) at $9.5<log(mbox{M}_{star}/mbox{M}_{odot})<10.5$, stochastic star formation in blue-sequence galaxies, causing a weak burst and subsequent return to the blue sequence (30%); (3) at $log(mbox{M}_{star}/mbox{M}_{odot})>10.5$, cyclic evolution of quiescent galaxies which gradually move towards the high-mass end of the red sequence through weak starbursts, possibly as a result of a merger with a smaller gas-rich companion (40%). Our analysis suggests that AGN are `on for $50%$ of the duration of the post-starburst phase, meaning that traditional samples of post-starburst galaxies with strict emission line cuts will be at least $50%$ incomplete due to the exclusion of narrow-line AGN.
We present the star formation histories of 39 galaxies with high quality rest-frame optical spectra at 0.5<z<1.3 selected to have strong Balmer absorption lines and/or Balmer break, and compare to a sample of spectroscopically selected quiescent gala xies at the same redshift. Photometric selection identifies a majority of objects that have clear evidence for a recent short-lived burst of star formation within the last 1.5 Gyr, i.e. post-starburst galaxies, however we show that good quality continuum spectra are required to obtain physical parameters such as burst mass fraction and burst age. Dust attenuation appears to be the primary cause for misidentification of post-starburst galaxies, leading to contamination in spectroscopic samples where only the [OII] emission line is available, as well as a small fraction of objects lost from photometric samples. The 31 confirmed post-starburst galaxies have formed 40-90% of their stellar mass in the last 1-1.5 Gyr. We use the derived star formation histories to find that the post-starburst galaxies are visible photometrically for 0.5-1 Gyr. This allows us to update a previous analysis to suggest that 25-50% of the growth of the red sequence at z~1 could be caused by a starburst followed by rapid quenching. We use the inferred maximum historical star formation rates of several 100-1000 Msun/yr and updated visibility times to confirm that sub-mm galaxies are likely progenitors of post-starburst galaxies. The short quenching timescales of 100-200 Myr are consistent with cosmological hydrodynamic models in which rapid quenching is caused by the mechanical expulsion of gas due to an AGN.
88 - Mark Swinbank 2019
We present an analysis of the gas outflow energetics of 529 main-sequence star-forming galaxies at z~1 using KMOS observations of the broad, underlying H-alpha and forbidden lines of [N II] and [S II]. Based on the stacked spectra for a sample with m edian star-formation rates and stellar masses of SFR ~ 7 Mo/yr and M* = (1.0+/-0.1)x10^10 Mo respectively, we derive a typical mass outflow rate of dM/dt = 1-4 Mo/yr and a mass loading of dM/dt/SFR = 0.2--0.4. The mass loading of the wind does not show a strong trend with star-formation rate over the range SFR ~ 2--20 Mo/yr, although we identify a trend with stellar mass such that dM/dt/SFR ~ M*^(0.26+/-0.07). Finally, we find that the line width of the broad H-alpha increases with disk circular velocity with a sub-linear scaling relation FWHM_broad ~ v^(0.21+/-0.05). As a result of this behavior, in the lowest mass galaxies (M* < 10^10 Mo), a significant fraction of the outflowing gas should have sufficient velocity to escape the gravitational potential of the halo whilst in the highest mass galaxies (M* > 10^10 Mo) most of the gas will be retained, flowing back on to the galaxy disk at later times.
Despite decades of study, we still do not fully understand why some massive galaxies abruptly switch off their star formation in the early Universe, and what causes their rapid transition to the red sequence. Post-starburst galaxies provide a rare op portunity to study this transition phase, but few have currently been spectroscopically identified at high redshift ($z>1$). In this paper we present the spectroscopic verification of a new photometric technique to identify post-starbursts in high-redshift surveys. The method classifies the broad-band optical-near--infrared spectral energy distributions (SEDs) of galaxies using three spectral shape parameters (super-colours), derived from a principal component analysis of model SEDs. When applied to the multiwavelength photometric data in the UKIDSS Ultra Deep Survey (UDS), this technique identified over 900 candidate post-starbursts at redshifts $0.5<z<2.0$. In this study we present deep optical spectroscopy for a subset of these galaxies, in order to confirm their post-starburst nature. Where a spectroscopic assessment was possible, we find the majority (19/24 galaxies; ~80 per cent) exhibit the strong Balmer absorption (H $delta$ equivalent width $W_{lambda}$ >5 Ang.) and Balmer break, characteristic of post-starburst galaxies. We conclude that photometric methods can be used to select large samples of recently-quenched galaxies in the distant Universe.
We report the discovery of two Einstein Crosses (ECs) in the footprint of the Kilo-Degree Survey (KiDS): KIDS J232940-340922 and KIDS J122456+005048. Using integral field spectroscopy from MUSE@VLT, we confirm their gravitational-lens nature. In both cases, the four spectra of the source clearly show a prominence of absorption features, hence revealing an evolved stellar population with little star formation. The lensing model of the two systems, assuming a singular isothermal ellipsoid (SIE) with external shear, shows that: 1) the two crosses, located at redshift $z=0.38$ and 0.24, have Einstein radius $R_{rm E}=5.2$ kpc and 5.4 kpc, respectively; 2) their projected dark matter fractions inside the half effective radius are 0.60 and 0.56 (Chabrier IMF); 3) the sources are ultra-compact galaxies, $R_{rm e}sim0.9$ kpc (at redshift $z_{rm s}=1.59$) and $R_{rm e}sim0.5$ kpc ($z_{rm s}=1.10$), respectively. These results are unaffected by the underlying mass density assumption. Due to size, blue color and absorption-dominated spectra, corroborated by low specific star-formation rates derived from optical-NIR spectral energy distribution fitting, we argue that the two lensed sources in these ECs are blue nuggets migrating toward their quenching phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا